
1A
7 112 74ONR (OFFICE OF NAVL RESERCH) RESERCH INDITBUE 1/

REASONING AND PLRNNING(U) SRI INTERNATIONAL MENLO PARK
CA ARTIFICIAL INTELLIGENCE CENTE.. K G KONOLIGE ET AL.

UNCLRSSIFIED MAY 8? NSSSI4-95-C-0251 F/O 12/7 NI.

1111 Z.0 1..
11Lm1 136 2.0

1111L1--

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS. 963-A

i

l, .1 .4 .-@ -W V . ,W tq w W Vv V V
%. % .R % %%

Z \ % *

~ ~ ~~/ ~ ~WW *'-.v** *'

5AD-A182 724
ONR RESEARCH IN DISTRIBUTED
REASONING AND PLANNING

r0| | INTERIM REPORTJCovering Period - February 1985 to February 1987

May 1987

By: Kurt G. Konolige, Computer Scientist
Michael P. Georgeff, Program Director
Amy L. Lansky, Computer Scientist

Representation and Reasoning Program P..
Artificial Intelligence Center

I LEi- C T E .,

Prepared for: -

Office of Naval Research
800 North Quincy
Arlington, Virginia 22217
ATTN: Dr. Alan Meyrowitz

ONR Contract No. N00014-85-C-0251
SRI Project 8342

.............- .. : -. : -.

Drs.---

Approved for PUblic 1elotj "'
D. stribution I'nl.-t.rod

Michael P. Georgeff, Program Director , __,,

Representation and Reasoning Program .. J\

C. Ray Perrault, Interim Director
Artificial Intelligence Center Computer and Information Sciences Division

T13 Ra'vwomr, Av * Menlo Park. CA 9.-025
International 11 12 00 * I WX 910-373-2046 * Ti,,,y 3-.1- 80

6-

INTRODUCTION

The goal of the Distributed Reasoning and Planning projects has been to provide fundamen-
tal research into the principles upon which a network of intelligent, cooperative computer
agents can be based. In this Interim Report we describe work conducted by SRI under
Contract N00014-85-C-0251 with the Office of Naval Research in the two years ending
February, 1987.

Background

The motivation for distributed systems of intelligent agents arises when we cons. er problem
domains with the following characteristics:

The environment is naturally partitioned, either spatially or functionally. An example
of the former is a surveillance task in which several different areas must be patrolled;
of the latter, assembly tasks in which major subcomponents can be assembled in
parallel.

' Each process's view of the environment is dynamic: other processes may be performing
tasks at the same time, and chains of events may result from ongoing natural processes.

a Each process has partial or imperfect knowledge of the environment.

* The cost of communication among processes may be high or the communication chan- C.
nels may be slow, so that there is a significant delay in sending large amounts of
information. .).. ,

This multiagent, dynamic domain is very different from the static, single-agent domains
of much previous planning research in artificial intelligence. Because the cost of commu-
nication is high, each process react intelligently on its own to changes in the environment.
Furthermore, bec.use of the uncertainty inherent in information gathered from sensory ap-
paratus and limitations on the functional capabilities of the processes, each process must
have a well-developed model of its environment (including the structure of other processes),
and the ability to reason about actions and events in quite complex ways. We call such
autonomous intelligent processes agents. The reasoning abilities needed by these agents fall
into the following general categories:

2

'~v -, , ,

* Reasoning about the environment on the basis of what is known, including reasoning
about the beliefs and intentions of other agents.

* Communicating to exchange information about the environment and intentions to act.

* Reasoning about actions and events, including reasoning about the effects and inter-
action of actions.

a Forming cooperative plans on the basis of this information.

* Monitoring and synchronizing the execution of individual plans.

* Using explicit information about the structure of the domain (the various locations and
their structural interrelationships) to help guide the formation and synchronization of
the plans of multiple agents.

These issues have been at the core of our research efforts in distributed reasoning and
planning over the past five years. This research has naturally fallen into two parallel, yet
interrelated, paths. The first path has primarily involved the search for a solution to the
technical problems of coordinating the plans and behaviors of multiple agents. Research
along this path has assumed that the types of goals to be achieved have been defined and
that the task at hand is to generate synchronized plans for achieving those goals. This
closely resembles the traditional notion of planning in AI, and the natural starting point
for our research was to look at existing single-agent planners to see whether they could be
extended to accommodate multiagent worlds. Over time, however, we discovered that the
underlying models of action for single-agent planning were not sufficiently rich to capture
the complicated synchronization properties of multiagent worlds. Subsequent research then
began to explore richer action representations, in particular to make use of work that had
been done in computer science concurrency theory.

Our second research path has focused on the problem of designing agents that are both
autonomous and capable of performing cooperative tasks in multiagent environments. Our
basic strategy was to examine carefully how humans actually function-in essence, to model
agents as entities with explicit beliefs, desires, and intentions. These cognitive components
of human "rationality" were examined and formalized, and realistic computational tech-
niques were formed to reason with them. This work is related to the first research path in
that it forms a basis for the actual selection of goals. It also directly affects the planning
process, because agents' beliefs about one another can affect how they plan and synchronize
with each other.

Out of this second line of research has grown another focus of our attention: providing
an account of reasoning about defaults. This research is essential to the development of
distributed planning agents, because such agents will normally have only partial information
about one another's plans. Given the cost of communication, these agents must be able to
rely on default reasoning to fill in missing information in a plausible way.

We have been conducting research in each of these areas on this project, and have
achieved significant progress. We briefly review this work below.

3
-D

CURRENT RESEARCH
RESULTS

Representing and Reasoning About Cognitive States

One of the major research issues that we studied has been the use of concepts from symbolic
logic and theoretical computer science to rigorously characterize the notion of a rational
cognitive agent. In particular, we investigated the role of knowledge, belief, desire, intention,
planning, and action from several points of view, as follows.

" Their formal properties as studied in idealized models abstracted from common sense

" Their respective roles in allowing an agent to carry out complex purposive behavior

e Various computational realizations.

Under our intuitive model of intelligence, an agent chooses actions by foreseeing their
consequences and measuring these against his goals. In the case of multiple agents, part of
the problem of projecting consequences involves reasoning about how an action can affect
what other similar agents are likely to believe, want, and do. While this commonsense view
of intelligence has served as the implicit basis of much work in distributed AI planning,
very little had been done previously to formalize this concept in a way that could serve as
the basis for concrete planning algorithms. Indeed, the formalization of the key elements of A

cognitive state still remains a significant challenge.

Kurt Konolige's thesis [51] made significant progress in formalizing belief states. Previ-
ous formal models of belief were derivatives of a possible-world semantics for belief. How-
ever, this model suffers from epistemological and heuristic inadequacies. Epistemologically, r
it assumes that agents know all the consequences of their belief. This assumption is clearly I
inaccurate, because it doesn't take into account resource limitations on an agent's reasoning .l
ability. It is also computationally inefficient. E]

A more natural model of belief is Konolige's deduction model: an agent has a set of ...
initial beliefs about the world in some internal language, and a deduction process for deriving
some (but not necessarily all) logical consequences of these beliefs. Within this model, it
is possible to account for resource limitations of an agent's deduction process; for example, - ...-.

I'"; , .

ft . S ft.;
4... -

one can model a situation in which an agent knows the rules of chess but does not have the
computational resources to search the complete game tree before making a move.

In the beginning years of our work, we investigated a Gentzen-type formalization of the
deductive model of belief, and have proved several important and original results. Among
these are soundness and completeness theorems for a deductive belief logic; a correspondence
result that shows the possible-worlds model is a special case of the deduction model; and a
modal analog to Herbrand's Theorem for the belief logic. Several other topics of knowledge
and belief have been explored from the viewpoint of the deduction model, including a theory
of introspection about self-beliefs, and a theory of circumscriptive ignorance, in which facts
an agent doesn't know are formalized by limiting or circumscribing the information available
to him.

A major part of our research effort in the last two years has been the computational
implementation of the deduction model of belief. We have completed proofs of soundness
and completeness for resolution in a modal logic of belief, as described in Chapter 1. These
methods are significant and unique for a number of reasons. They are the first practical
direct theorem-proving methods for a modal logic, that is, that do not rely on a translation
of the modal language into a first-order one. Also, they use the notion of semantic attach-
ment as an efficient means for reasoning about the beliefs of other agents. Basically, this
involves setting up a model of the agent's belief derivation process, and actually running
this process to determine what beliefs that agent has. A preliminary implementation, built
in collaboration with a graduate student, Christophe Geissler, has successfully solved some
complicated puzzles that are testbed problems for epistemic theories. These results are
reported in Chapter 2.

Currently we are integrating our belief resolution methods with a state-of-the-art the-
orem prover using connection graph methods. We intend to use the resulting system to
represent and reason about concurrent actions, "spontaneous" events outside the immedi-
ate control of the planner/executor, and the effects of an agent's actions on the beliefs.
goals, and plans of other agents.

In other work, we have been developing a theory of default reasoning that relies on epis-
temic concepts, and so can be integrated with our theory of deductive belief. The particular
kinds of defaults we are interested in are expressed by statements such as "Typically, A's
are B's." In the absence of any contradictory information, we wish to conclude that any
particular A is also a B, e.g., from "Typically birds fly" and "Tweety is a bird" we should
infer that Tweety flies. But this conclusion can be denied if there is information which
defeats the application of the default; we may know that Tweety is a penguin, for exam-
ple. We have used a theory of default reasoning that distinguishes several different types
of defeat for default rules, and introduced by Pollock [93]. In collaboration with another
graduate student, Karen Myers, we have developed this theory further, and shown how to
incorporate various intuitive constraints on defaults into a formal epistemic system. These
results are in Chapter 3.

5
-)-

Reasoning About Action

The classic STRIPS approach to planning [25] represents the effects of actions using op-
erator descriptions that assume a single-agent world. Our initial approach to multiagent
planning was to extend some of the STRIPS ideas to allow the possibility of multiple agents.

One technique treats actions as atomic events, where the actions of multiple agents are in-
terleaved in sequence. This technique was found to be inherently insufficient, because it
does not account for the possibility of simultaneous activity and its consequent effects.
Turning to recent work in concurrency theory, we next attempted to blend synchronization
techniques with traditional state-based planning.

One direction of research concerned the question of how distributed problem solvers
could plan to perform distinct tasks without interfering with one another, while allowing
cooperation where necessary. We envisioned a number of agents, each separately forming
plans to accomplish given tasks, and then, by communicating with one another or a central
scheduler, modifying their plans to avoid interference with one another. These plans, though
separate, could include cooperative actions that are to be performed during a single interval

of time.

Battle management provides a typical scenario, where individual commanders might
form their own plans and then coordinate these with one another. A different scenario
would be a multicrew aircraft, where, for example, one crew member might form plans

for diagnosing an engine malfunction while other crew members separately form plans to
complete the mission or to analyze incoming radar information. At some stage in the
process, these plans must be coordinated so that the execution of one task does not interfere
with the execution of others.

It is assumed that, having formed the separate plans, the individual agents communicate
information about these plans to one another, or to a central scheduler, by describing the
possible sequences of actions they intend to carry out. In our previous research, we were
concerned with describing means by which a central scheduler could analyze the plans and
advise the individual agents how to coordinate them. We did not want the scheduler to
impose unnecessary constraints on the order in which actions were performed: we wanted
the individual agents to have maximum flexibility in executing their own tasks and not be
required to wait for other agents unless it was necessary to avoid interference or to allow
for cooperation on some subtask.

Although we have assumed use of a central scheduler, the problem-solving methods
could also be distributed to a number of agents. Furthermore, we can, although we need
not, assume that the agents know enough about one another that they include in their plans
only those actions that are observable by other agents. Internal actions of a given agentcan be safely excluded from the plans that are communicated to the central scheduler.

A central scheduler must first be able to determine, from descriptions of the actions
occurring in the plans, which actions may interfere with one another, and in what way.
For example, it may be that two actions cannot be performed at the same time, or that
one action must be begun before another is finished. This requires that we have a model of
action and an action description language that allows us to determine potential interference.

6

W* 0, *f . * . - . *. A ~ . *** ..- * *

Having determined which actions can interfere with one another, and the way in which
they interfere, the central scheduler must construct a coordinated plan that avoids this
interference. To do this, it must determine which possible orderings of actions satisfy
the constraints of noninterference. Having made that determination, it can then insert
synchronization actions-interagent communications-into the original plans to ensure that
only these interference-free orderings are allowed. For maximum flexibility, we require that
the synchronization be such that all potential orderings can be generated, rather than
impose additional and unnecessary constraints on the behavior of the individual agents.

In performing this work, we first developed a more powerful representation of actionl
than that used by traditional planners [28]. We represent actions as sequences of states.
rather than as simple state-change operators. This approach allows the expression ,,i more
complex kinds of interaction than would otherwise be possible. The action representation
was eventually enhanced to include sequencing, selection, nondeterminism, iteration, and
parallelism; it is thus much more general than most models of action. It also provides a basis
for understanding and reasoning about action sentences in both natural and programming
languages.

Next, an efficient method of interaction and safety analysis was developed and used
to identify critical regions in the plans [28]. An essential feature of the method is that
the analysis is performed without generating all possible interleavings of the plans, thus
avoiding a combinatorial explosion. The original approach, developed by Michael Georgeff,
achieved this when the plans of the individual agents were linear. He showed the impor-
tance of the STRIPS assumption in substantially reducing combinatorics, and how to use
a commutativity law to further reduce combinatorics. In subsequent work [29], he showed
how to determine freedom from interference for arbitrary-rather than linear-plans, but
did not show how, if there was interference, such plans could be coordinated.

These ideas were used by Chris Stuart [1111, who implemented a synchronizer based
on techniques developed by Wolper and Manna [74]. Whereas Georgeff's techniques could
only find areas of interference between single-agent plans, Stuart's synchronizer can solve
for more arbitrary global temporal constraints. However, these constraints are restricted to
being propositional: they must refer to existing actions. Thus, synchronization that involves
the creation and addition of new actions cannot be accomplished with Stuart's system.

In the past year, our research has focused on departing from traditional state-based
views, favoring instead an event-based representation of domain. In part, this departure
resulted from our experiences with constructing the synchronizer described above. as we
usually found ourselves thinking more in terms of events than of the states affected by
events. Some of our work has involved relating state-based and event-based reasoning in
an essentially state-based framework [30,31], which, unlike previous state-based models of
action, provides for simultaneous action. We constructed a model-based law of persistence to
describe how actions affect the world. No frame axioms or syntactic frame rules are involved
in the specification of any given action, thus allowing a proper model-theoretic semantics
for the representation. We identified some serious deficiencies in existing approaches to
reasoning about multiple agents. Finally, we showed how the law of persistence. together
with a notion of causality, makes it possible to retain a simple model of action while avoiding

7t

most of the difficulties associated with the frame problem. This work is described in Clapter
4.

Our other approach was to depart completely from state-based models and represent the
world directly in terms of structured, interrelated events [63,64,61]. The basis of this work is

GEM (the Group Element Model). A new multiagent planner based on this representation,
GEMPLAN, is currently being developed. Besides being based on the very different, event-
based approach, GEMPLAN will accomodate much broader forms of plan synchronization
than Georgeff and Stuart's planners, including the satisfaction of a subset of first-order
temporal logic constraints. Chapter 5 describes our research in this area.

As discussed earlier, the interest in underlying principles of rationality, both for planning .
and for interpreting the actions and utterances of others, is an important characteristic of
our work in distributed reasoning. In particular, these principles are often thought to
include design principles for agents with limited resources who must cope with a changing
environment in real-time. To this end, we have developed a reactive reasoning system,
called a Procedural Reasoning System (PRS), that can reason about and perform complex
tasks in dynamic environments. It has been used for performing the malfunction handling
tasks as used on NASA's space shuttle and for the control of the new SRI robot, Flakey. to
accomplish a series of tasks on a simulated space station.

To allow for performing multiple reasoning tasks concurrently (either by a single agent
or by a number of different agents), PRS has been designed so that several instantiations of
the basic system can run in parallel. Each PRS instantiation has its own beliefs, goals, and
plans, and operates asynchronously relative to other PRS instantiations, communicating
with them by sending messages. The messages are written into the belief data base of the

receiving PRS, which must then decide what to do, if anything, with the new information.
As a rule, this decision is made by a fact-invoked plan of action (in the receiving PRS),
which responds upon receipt of the external message. In accordance with such factors as the

reliability of the sender, the type of message, and the beliefs, goals, and current intentions
of the receiver, it is determined what to do about the message - for example, to acquire
a new belief, establish a new goal, or modify intentions. It remains to investigate just '
what kinds of communication are best suited to what environments. However, the message-

passing mechanisms we have employed should allow us to integrate more complex reasoning
about interprocess communication, such as that developed by Cohen and Levesque [16]. as
described in Chapter 6.

Lma'

8:

*4 A ' ,~ ~,.aaS s., a'. ~ -

*S' ~ ','a~ ** *. .. ~ ~ a ... , -

FUTURE PLANS %

In the next two years, we plan to concentrate our research on representing and reasoning
about cognitive state. Our current results on the representation of belief, and computational
implementations of formal systems for reasoning about it, have proven to be exciting, and we
wish to extend them to incorporate reasoning about the intentions, plans and goals of other
agents. As we have argued above, this is an important and critical development for building
truly autonomous agents. While there has been some Al research on representing and
reasoning about the plans of other agents, especially for plan inference (inferring the plans
of agents from their actions; see, for example, [4,15,71]), this work has generally ignored the
complex interaction that exists among beliefs, intentions, and plans. Two exceptions are
the recent thesis of Martha Pollack on inferring the plans of agents whose beliefs may be
mistaken [?], and the work of Cohen and Levesque [14], in which the interaction of belief,
intention and goals are formalized using a possible-worlds semantics. Martha Pollack will be
joining the project, and we intend to pursue the development of a general representational
framework for plans, intentions, and belief. As in the development of the deduction model
of belief, the methodology we use will be experimental robot psychology (see Konolige
[52]), that is, we will examine the design of a typical robot planning agent, and abstract
the essential properties of its cognitive structure, concentrating on the relationship between
its plans and beliefs about the world. We will try to avoid the pitfall of over-simplifying
assumptions: for example, we will not suppose that the robot agent's beliefs are correct,
nor that its actions will always succeed.

Once we have the abstract model specified, we will then formalize it as a means of rea- 0
soning about the agent. Here we will be guided by our experience with the deduction model
of belief, and our recent work on defaults (Chapter 3). By using default rules, it is possible
to state simply what is normally or typically the case, while still allowing for the possibility
of complications. This is especially congenial for the formalization of the interaction of
intention and belief, where the normal case can be described in a straightforward manner,
but taking into account the various ways in which things can go wrong causes unacceptable
complications in the formalization process.

9

Chapter 1

RESOLUTION AND
QUANTIFIED EPISTEMIC
LOGICS

This work was reported in the Conference on Theoretical Aspects of Reasoning about Knowl-
edge, Monterey, California, 1986. It is written by Kurt Konolige.

A Introduction

Quantified modal logics (QML) have emerged as an important tool for reasoning about
knowledge and belief in Artificial Intelligence (AI) systems. The idea of formalizing the
basic properties of knowledge and belief in QML originated with Hintikka [44], who was
interested in the analysis of several epistemic paradoxes. Subsequently he reformulated the
semantics of his work using Kripke's notion of relative accessibility between possible worlds
[45]. In the computer science community, McCarthy [771, Sato [101], Moore [84], Levesque
[67], Halpern and Moses [38] and others have used variations of his approach to formalize
and reason about knowledge and belief.

Whether quantified modal logics of this sort are appropriate as epistemic logics is con-
troversial, both in philosophy and Al. The major objection is that they assume agents are
perfect reasoners, so that they know all the logical consequences of their knowledge. Several
attempts have been made to modify the possible-world semantics to avoid this assumption
[68,23], and there are also other formal approaches which take into account the limited rea-
soning power of agents (for example, [51]). It is not the purpose of this paper to comment
on the relative merits of these approaches; quantified modal logics with Kripke semantics
are an important research tool for epistemic reasoning in computer science at present, and
will probably remain so. Here we will be concerned with proof methods for these logics

that could be used in automatic deduction systems. Surprisingly, there has been relatively
little work in this area, although decision procedures for the propositional case have been
explored (see Halper.. and Moses [39]).

10

'..

In this paper we lay the theoretical groundwork leading to the derivation of a resolution
procedure for certain quantified modal logics. The procedure has been implemented and
successful solves a version of a standard benchmark in epistemic reasoning, the Wise Man
Puzzle [27]. In outline, the dirivation is as follows.

Kripke [56] has given a completeness proof for quantified S5. based on the analytic
tableaux method. We build on his results, extending them in two main areas. First,
Kripke's methods work only with constants which have a fixed interpretation relative to a
single domain (rigid designators). For expressivity it is important to have terms whose in-
terpretation varies over possible worlds; it is also technically necessary for the development
of resolution methods, since skolem functions, by their very nature, cannot be rigid desig-
nators. However, there are well-known problems with the substitution of nonrigid terms
into modal contexts. We solve these by the technical device a bullet constructor, essentially
a method for turning nonrigid terms into rigid ones in the proper context.

Second, we isolate a concept, that of reducing the unsatisfiability of a set of modal
atoms to the unsatisfiability of some set of their arguments, that is the key step in proving
completeness. We will show how any system which possesses a reduction theorem of the
proper form is complete.

Third, using a method from Smullyan [107], we put analytic tableaux for prenex sen-
tences into a form in which all operations on quantifiers precede those on truth-functional
connectives. Then, as a corollary to the completeness proof, we have a version of the
Skolem-Herbrand-G6del theorem for modal systems: a sentence is unsatisfiable if and only
if a finite conjunction of its instances is. This theorem is the foundation of all automatic
deduction procedures for first-order logic, including Robinson's resolution method [96].

With the help of the bullet constructor, it is possible to eliminate existential operators
from a sentence in prenex normal form, a process referred to as skolemization in first-order
systems. Finally, using our Skolem-Herbrand-G6del theorem and drawing on the technique
of theory resolution (from Stickel [110]), we show how the reduction theorem for a modal
system leads to a sound and complete resolution system.

Because of space limitations, it is impossible to give proofs of the theorems in this paper.

B Logical preliminaries

B.1 Epistemic logics

We consider six quantified modal logics that are typically used in reasoning about knowledge
and belief (see Halpern and Moses [39]); we call these collectively epistemic logics. All of
the logics have the following properties. Their language is first-order with the addition of
a modal operator of the form BO, where 0 is a formula of the language. Informally. BO
means that the agent believes or knows the proposition expressed by o. All of the results
of this paper are easily extended to the case where there is a sequence of modal operators
Bi indexed by agent. but for simplicity we present the single-agent case.

11

Both arbitrary nesting of operators and "quantifying in" (i.e., statements of the form
3x.BO(x) or Vx.BO(x)) are allowed in the language. In addition, there is a bullet construc-
tion et, where t is a term not containing any bullet operators. A sentence is a formula which
has no free variables, and whose bullet constructions are all under the scope of a modal
operator. A modal atom is a formula BO; if (contains no variables, it is a ground modal
atom. A modal literal is either a modal atom or its negation.

We will use uppercase Greek letters (F, A, etc.) to stand for denumerable sets of
formulas; if F = 17,- ... , then Br abbreviates B 1 , B72 , ..., and -BF7 abbreviates -iBy1 ,
-B72, • • • •

* C Semantics

The semantics of these logics is the standard Kripke possible-worlds model. A frame is a
structure (W, R), where W is a set of possible worlds, and R is a binary relation on WU. A
particular logic will often place restrictions on the type of relation allowed in frames. e.g., in
some epistemic logics (see below) R is transitive. In this paper we will restrict ourselves to
a single relation for simplicity; the generalization to families of operators is straightforward.

A model consists of a frame, a special world w0 E W (the actual world), a domain Di
for each world wi E W, and a valuation function V. At each possible world, V assigns a
value to each term and sentence of the language. V obeys first-order truth-recursion rules:
it also obeys particular rules for the modal operators, depending on the logic.

If V(w,b) = true, then we write 1--- 0. =m 4 is an abbreviation for =0 o. If o is
true in all models of a logic A, we write I=A 0 or simply ¢ if the logic is understood.

The bullet construction has a special semantics. No matter where it occurs in a formula,
ot always refers to the actual individual denoted by t, so that for all it, E W, V(ot)
V(wo, t).

Different constraints on R yield different versions of epistemic logic. We consider the
following variations:

Logic Restriction on R

A' none
K4 transitive
K45 transitive, euclidean

T reflexive
S4 reflexive, transitive

$5 equivalence

The first three logics (K, K4. K45) have belief as their intended interpretation. K is
the simplest of these, placing the fewest restrictions on beliefs. K,4 and K45 represent
various types of introspective properties. In A'4. if one believes something, one believes one

12

z'!

~ s-.~ ~-s SLS rn. ..'. - ~ - -

believes it (BO D BBO). K45 has this and its converse: if one doesn't believe something,
one believes one doesn't believe it (-,Bo D B-'Bo).

The three logics which have reflexive R are logics of knowledge. The distinguishing
characteristic here is that knowledge must be true (BO D 0). T, S4 and S5 are the
epistemic logics corresponding to K, K4 and K45.

It must be stressed that the purpose of the paper is not to argue for the appropriateness
of these logics for modeling epistemic concepts. Indeed, it is easy to find problems here; for
example, there are good reasons for denying that knowledge is only true belief, since it also
seems to involve some complex notion of justification; and this is not formalized in T. S.I.
or S5.

Truth-recursion equations for these logics are the same. Along with rules for the boolean
operators and quantifiers, we add the following rule for the modal operators:

V(w,BO) = true iff Vw'. wRw' - V(w',¢) = true (1.1)

C.1 Substitution

Substitution of terms for quantified-in variables is problematic, since it does not preserve
validity. Consider the following example of an agent's beliefs.

P(M(c))
-iBP(m(c)) (1.2)
Vx.Px D BPx

We can construct a model as follows. Let P be the property of being non-Italian, let n(.V)
denote the mayor of the city x, and c denote New York. Suppose the agent believes the
mayor of New York is Fiorello LaGuardia (and not Ed Koch, the actual mayor); it is easy
to confirm that all the sentences are satisfied.

Now if we substitute m(c) for x in the third sentence, the resulting set is unsatisfiable.
The reason is that, although x must refer to the same individual in all possible worlds, the
substituted expression m(c) need not. So even if a universal sentence is true in a model.
some of its instances can be false.

Our solution to this problem is to redefine the meaning of "instance" by introducing a
bullet construction (o) whenever there is a substitution for variables inside the context of
modal operators. In the above example, substituting m(c) for x yields

P(m(c)) D BP(.m(c)) , (1.3)

which is still satisfied by the original model, since .e(c) refers to Ed Koch even in the
context of the belief operator.

We revise the substitution rule in the following way. Let 0" stand for the substitution
of a for the free variable x in 0.

(=f B./o if t is not a bullet construction
Bo' otherwise.

13

~*b *.. r'$~ ... ~' -

C.2 Reduction theorems %

A key notion for our development is that of a reduction theorem for a modal logic A.
Basically, such a theorem shows how to reduce the unsatisfiability of a set of modal literals
Z to the unsatisfiability of a set of sentences W whose modal depth is strictly less than that
of Z. For example, consider the simplest case, the propositional belief logic A' for a single
agent. It is easy to prove that the set of modal atoms Z = {BF, -BA} is K-unsatisfiable if
and only if for some 6 E A the set W = {F, --,} is K-unsatisfiable. Hence the unsatisfiability
of Z is reducible to the unsatisfiability of W, and the modal depth of IV is at least one less
than than of IV."

For some logics, such as S4 and S5, it is not easy to find a reduction in terms of the
modal depth of formulas, which is a syntactic property. Instead, we define a more semantic
characterization of reduction in the next subsection.

C.3 Unsatisfiability depth for Kripke models

Consider a logic A and a sentence S. Suppose a model m satisfies S, so that .4 1=, S.
Now we may only have to search a certain part of m's possible-world structure to establish
the truth of S; for example, in the epistemic logic S4, the truth of S = Bp D BBo can be
established for any m by traversing paths on the accessibility relation only to a depth of
two. Paths longer than this have no role in determining the truth value of S.

To make this more precise, we introduce the concept of agreement trees. Let in be a
model (14', R, wo, D, 1). A model m' is an agreement tree for m to depth n if the following
conditions hold:

1. The structure of R' is a tree.

2. There is a one-one correspondence between paths of length less than or equal to 11 in
the two models.

3. If wo .. w- I 1 is a path in m (withj < n), and u 0 ... i>r1 u' is its corresponding
path in in', then the domain and valuation of w, and u are the same, and U-0 ... W3
and w o . .. _ are also corresponding paths.

The agreement tree "unwinds" any cyclic structure of R to a depth of u. Note that the rest
of the agreement tree can be arbitrary, i.e., it need not correspond to m.

Definition C.1 A set of sentences F is A-unsatisfiable at depth n if for #very .-l-nodc'l in.
every agreement tree of depth n falsifies some element of F. . .,

We will write unsat, to indicate unsatisfiability at depth n. Note that if a set is unsat,,. "
it is also unsatk for all k > n, and also (simply) unsatisfiable.

I-I•

C.4 Reduction theorems for epistemic logics

We now give reduction theorems for the six epistemic logics.

Definition C.2 The bullet transform of a set of formulas W is a set W ° derived from
W by replacing all occurences .t of the bullet construction with either On(t) (if .t is under
the scope of a modal operator) or n(t) (if it is not), where n is function not occurring in
W; e.g., 4k(.a) A BO(ea) - O(n(a)) A BO(en(a)). The identity transform of W is a set
WI formed by deleting all bullet constructors not under the scope of a modal operator, e.g.,
¢(ea) A B¢(ea) - ¢(a) A BO(ea).

Theorem C.1 Let Z be a first-order satisfiable set of literals {E,BF, -,BA} of an epistemic
logic A, where E are nonmodal, and all bullet terms occurring in A also occur in r. Z is
unsatn if and only if for some b E A,

(K) {F, -b}"
(K4) {F,-,b,Br,}
(K45) f{r, - , r,- unsatnB ,.

(T) {r,-,6}" or {rf', E}
(S4) {r, -,b, Br} or {r, E: }
(S5) {r,-,b, Br, -BA,-,B-E} or {1, }

An example:

{-,B-B(p A q), -Bp} is S5-unsat2
{-B-,B(p A q), B(p A q), -Bp} is S5-unsat,
{-B-B(p A q),B(p A q),p A q,-iBp, -p} is S5-unsat0

D Analytic tableaux and completeness

We now give a brief overview of prenex analytic tableaux, which are defined in Smullyan
(107]. Let S be a finite set of sentences in prenex form (all quantifiers precede other oper-
ators). A prenex tableau for S is a sequence of sentences starting with S, and containing
instances derivable by the rules:

Vx.4 3x.4€VO 31.0, with proviso.

In the existential rule, the proviso is that the term t has not yet been introduced in the
tableau.

A prenex tableau is closedif some finite subset of its ground sentences is truth-functionally
unsatisfiable. It is provable that the (perhaps infinite) set of sentences of an open prenex

15

I

tableau are first-order satisfiable. This yields a version of the Skolem-Herbrand-G6del the-
orem for first-order logic: a set of sentences in prenex form is unsatisfiable if and only if a
finite set of its instances is.

For a modal logic A, prenex form is the same as in first-order logic, taking modal formulae
as unanalyzed predications. Thus VxB3yPxy is in prenex form; note that quantifiers which
are under the scope of modal operators are not affected. We modify the definition of closed
prenex tableau to be: some finite subset of its ground sentences is A-unsatisfiable. The key
theorem for modal prenex tableaux is the following. e

Theorem D.1 If a finite set S of prenex sentences is A-unsatisfiable, then there exists a
closed prenex tableau for S.

We give a brief proof sketch of Theorem D.1. The proof is by induction on the unsat- *

isfiability level of the prenex tableau. If S is unsat0 , then by the results of Smullyan [107],
its prenex tableau closes. Now assume that all sets that are unsat,_ 1 have closed prenex
tableau. Let S be unsatn. Suppose S has an open prenex tableau; consider the set W of
all ground sentences on this branch. This set is first-order satisfiable. By elementary rules
of propositional logic, and the reduction theorem for A, some set W' must be A-1insat,_l.
Now we convert this set to prenex form, and again set up a prenex tableau for 4": this
must close by the induction hypothesis for some finite W" C W'; hence S cannot have an
open tableau. Thus every set S which is A-unsat,, for finite n has a closed prenex tableaux.
Finally, if S is A-unsatisfiable, it is A-unsatn for some n less than the maximum depth of
embedding of modal operators; hence it must have a closed prenex tableau.

As an obvious corollary, we have the Skolem-Herbrand-G6del theorem for A. ',

E B-resolution

Using the results of the previous section, we can now give a resolution method for the
epistemic logics, which we call B-resolution. -?

F Clause form

Converting to clause form is the same as for first-order logic, with modal atoms having
different argument structures treated as if they were different predicate symbols. Thus
BVx.P(x), BPa, and B3x.P(x) are all considered to be different nilary predicates. Modal
atoms with n free variables are n-ary predicates, e.g., B(P(x) A 3y.P(y)) and B(y.P(y) A

P(x)) are different unary predicates with the free variable x. Variables quantified under
the scope of the modal operator remain unanalyzed or inert in B-resolution. and do not
interact with variables quantified outside the operators. An example: "

Vx3y.P(x,y) D B~z.Q(x,y,z) => -,P(x,f(x)) V B~z.Q(*x, of(x),z)

16

V

Note that substitution of f(x) for y in the modal context is done with of(x). Also, in
clause form we automatically insert a bullet operator before quantified-in variables (like x).
to distinguish them from variables whose quantifiers are inside the scope of modal operators
(like z).

We have proven the following theorem:

Theorem F.1 A sentence is A-unsatisfiable if and only if its clause form is.

G B-resolution

Our resolution method is based on Stickel's total narrow theory resolutioln rule [110], which
has the following form. Let L be a language that embeds a theory T, that is, the axioms of
T contain a set of predicates P of L (but not necessarily all predicates of L). Suppose there
is a decision procedure for determining a set of ground literals W in P to be unsatisfiable
(according to T). Then

L1 V A1

L 2 V A2
: (1.5)

Ln V An

A1 V A2 V ... V An , when {L1, L2 ,... Ln} is T-unsatisfiable

is a resolution rule that is sound and complete for the theory T. This rule includes binary
resolution as a special case, where L1 and L 2 are complementary literals.

For epistemic logic A, the reduction theorem tells us when a set of literals will be A-
unsatisfiable. Hence we can rephrase this rule is rephrased as follows. Let r = {01,72, .. .}
and A = {6, 62 } be finite sets of sentences, and E = {a,, a2 } a finite set of literals.
In the case of ground clauses, we have the following two resolution rules:

BThy V A,
B-y2 V A2

-'B61 V A,
-,B62 v v A

ol V Al (1.6)
a2 V A2

A, v A2 V ... v A' V A' V.. V A" V A" V-. where

(K,T) {r,-,61}*
(K4,S4) {F, Br, - } is unsat
(K45) {F, BIF,-41,,-BA }"
(K5) {r,Br,-1b,-iBA, iB-sn}t

17

,%C

BO VA (1.7)

In the first rule, we have listed all of the possibilities for the different epistemic logics.
For the simplest case, K, only the clauses with F and 61 are used. The second rule is applied
only for the knowledge logics T, S4, and S5.

H Lifting

The resolution rules have been given only for the ground case. Because of Theorem D.l,
these rules will be complete if we are allowed to derive instances of any clause. Of course.
this is a very inefficient way to do resolution, which is why unification is such an important
concept. In this respect, B-resolution is more complicated than ordinary binary resolution.
because there may be no "most general" unifier covering all possible ground resolutions.
For example, consider the following two clauses:

B(p(ea) A p(eb)) I.S)
-Bp(.x)

There are two substitutions for x which yield a resolvent (a/x and b/x), but no most general
unifier.

A second problem is that (1.6) and (1.7) are not true deduction rules, in the sense
that they are not effective. The solution to this and the instantiation problems lies in
how we check the unsatisfiability conditions. Suppose, each time we wish to do a B-
resolution, we start another refutation procedure using the indicated sets of sentences.
Then we intermix the execution of deductions in the main refutation proof with execution
in the subsidiary ones being used to check unsatisfiability. If at some point a subsidiary
refutation succeeds, we can construct a resolvent in the main refutation. If in addition we
use a subsidiary refutation procedure that allows free variables in the input (essentially doing
schematic refutations), then it is possible to subsume many instances of the application of
the resolution rules in one unsatisfiability check. The details of this approach are discussed
in Geissler and Konolige [271.

I Discussion

We are interested in general methods for finding resolution proof procedures for quantified
modal logics. As this paper shows, one such method is to prove a reduction theorem for the
logic. The nature of the reduction is apparent in the resolution rules, where unsatisfiability
of a set of modal literals is reexpressed in terms of unsatisfiability of their arguments. We
believe that such resolution methods are a natural and conceptually transparent means of
finding refutations. A large part of the advantage comes from being able to strip off the
modal operator and perform deductions on its arguments.

18

For the epistemic logics, reduction theorems are available. It is not clear that reduction
theorems will always be provable for a modal logic. For example, if we add a common
knowledge operator to an epistemic logic (see Halpern and Moses [38]), the resulting system
is much more complicated, and it is an open question as to whether a reduction theorem
exists.

Temporal logics are another important class of modal systems. Abadi and Manna [1]
and Farifias-del-Cerro [24] have both defined resolution systems for propositional temporal
logics. However, their methods are not readily extendable to the quantified case. It would
be interesting to try to use the techniques of this paper to formulate an alternative resolution
system, and compare them.

1,

19j

'S

Chapter 2

A RESOLUTION METHOD FOR
QUANTIFIED MODAL LOGICS
OF KNOWLEDGE AND BELIEF

This research was reported in the Conference on Theoretical Aspects of Reasoning about
Knowledge. Monterey, California, 1986. It is the joint work of Kurt Konolige (SRI) and
Christophe Geissler (ltcole Nationale Superieure des Telecommunications. Paris, France).

A Introduction

Modal logics with a possible-world semantics have been widely used to formalize various
accounts of belief and knowledge in Artificial Intelligence (AI) (Moore [84], Levesque [67],
and McCarthy [77]) and more recently in Computer Science in general (Halpern and Moses
[38]). These logics are important both as an analytic tool in analyzing systems, and as
a means of endowing artificial agents with the ability to reason about the knowledge and
belief of other agents. In this latter category we include query answering (Levesque [67]),

dialogue understanding (Appelt [6], Cohen and Perrault [13]. and Grosz [37]), and mul-
tiagent planning systems (Konolige (50], Rosenschein and Genesereth (98]). It is widely
recognized (see. for example, Moore [84]) that efficient and conceptually transparent proof
methods are needed for these systems. By efficient we mean that computer automation of
the methods produces those proofs needed for reasoning about belief within allowable time
and space limitations; by conceptually transparent we mean that the action of the theorem
prover is readily understandable, and the proofs clear and direct, so that it is easy to check
and modify the behavior of the system.

While there has been a good deal of useful work on decision procedures for propositional
modal logics (see Halpern and Moses [39]), fewer results have been obtained for quantified
modal logics. Hilbert-style and natural deduction axiomatizations (Kuo (57]) exist, but
there are no serious proposals to automate them. As an alternative. McCarthy [77] proved

20

theorems about a modal system by axiomatizing its possible-worlds semantics in a first-
order system; subsequently Moore [84] used this technique to efficiently automate proofs.
However, this is not a direct proof technique, because it involves reasoning about possible
worlds and other objects of the semantic domain, rather than manipulating beliefs directly.

In this paper we present an efficient, direct proof method for a modal logic of belief that
is based on Robinson's resolution principle ([96]). First we briefly review the modifications
to first-order resolution that are necessary to establish the B-resolution rule. This rule has
several properties which present problems for implementation in an automatic theorem-
prover: it is non-effective, so we must find a way to apply it incrementally; and we must
also develop techniques for controlling the size of the search space it generates.

The key idea we use to solve both problems is the concept of semantic attachment
(Weyhrauch [115]). To illustrate this technique, consider the statements "A believes P"
and "A doesn't believe PvQ." These are inconsistent in possible-worlds semantics, because
there is no world compatible with A's beliefs in which P is true and P V Q is false. We
can show this inconsistency by deducing a contradiction from P and -i(P V Q). Thus we
can prove facts about belief statements by attaching to their meaning and performing a
computation (in this case, deduction). The structure of reasoning is clear, and it is easy
to understand and control the often confusing embedding of agents reasoning about other
agents' beliefs.

B The Resolution Method

C Language preliminaries

We assume a modal language L built on a first-order language with function symbols. The
modal atoms are of the form [S]O, where S is a term denoting an agent and ¢ is a formula
denoting a proposition. The intending meaning is that a believes or knows (p.

The semantics of L are the standard Kripke possible-world models with an accessiblity
relation for each agent. It is well-known that various properties of knowledge and belief
can be expressed by placing conditions on the accessibility relations (Halpern and Moses

[39]). For simplicity of exposition we will limit ourselves to the system K, which has
no restrictions, although versions of the resolution method have been derived for all the
important systems (T, K4, 54, K5, K45, S5, etc.).

For technical reasons we make one further assumption: the domain of each possible world
is a subset of the domain of any accessible world. Rescinding this restriction is possible, but
introduces further complications in the resolution method that we do not wish to address
here.

21

P%

D Herbrand's Theorem

One version of Herbrand's Theorem is: a set of universal sentences is unsatisfiable if and
only if a finite subset of its instances are. Stated in this form, it sanctions the "lifting" of
proofs over ground sentences to those with universal variables. Unfortunately, Herrand's
Theorem is not true for modal logics with Kripke semantics, as we can see from the fol, wing
counterexample:

P(m(c))
[S 1p ("(cl) (2.1) -°, ,

Vx.Px D [S]Px

We can construct a model as follows. Let P be the property of being non-Italian, let 7n(.V)
denote the mayor of the city x, and c denote New York. Suppose S believes the mayor of
New York is Fiorello LaGuardia (and not Ed Koch, the actual mayor); it is easy to confirm
that all the sentences are satisfied.

Now if we substitute m(c) for x in the third sentence, the resulting set is unsatisfiable.
The reason is that, although x must refer to the same individual in all possible worlds, the
substituted expression m(c) need not. So even if a universal sentence is true in a model.
some of its instances can be false.

Our solution to this problem is to redefine the meaning of "instance" by introducing a
bullet operator (e) whenever there is a substitution for variables inside the context of modal
operators. ot always refers to whatever t denotes in the actual world, no matter what the
context of interpretation; the bullet operator thus acts like a rigid designation operator for
terms. In the above example, substituting m(c) for x yields

P(m(c)) D [S]P(om(c)) , (2.2)

which is still satisfied by the original model, since .m(c) refers to Ed Koch even in the
context of S's beliefs.

With this revised definition of substitution (and instance), Herbrand's Theorem is once
more valid (see Konolige [53]).

E Clause form

Converting to clause form is the same as for first-order logic, with modal atoms having
different argument structures treated as if they were different predicate symbols. Thus
[S]Vx.Px, [S]Pa, and [S]3x.Px are all considered to be different nilary predicates. Modal
atoms with n free variables are n-ary predicates, e.g., [S](Px A 3y.Py) and [S](3y.PyA Px)
are different unary predicates with the free variable x. Note that variables quantified uinder
the scope of the modal operator remain unanalyzed or inert in B-resolution, and (1o no

interact with variables quantified outside the operators. An example:

22

%~# "f

Vx3yRxy D [S]3z.Rxyz -,R(x,f(x)) V [SI3z.R(*x,*f(x),z) (2.3)

Note that substitution of f(x) for y in the modal context is done with .f(x). Also, in
clause form we automatically insert a bullet operator before quantified-in variables (like x),
to distinguish them from variables whose quantifiers are inside the scope of modal operators
(like Z).

F BK-resolution

Our resolution method is based on Stickel's total narrow theory resolution rule [110], which
has the following form. Let L be a language that embeds a theory T, that is, the axioms of
T contain a set of predicates P of L (but not necessarily all predicates of L). Suppose there
is a decision procedure for determining a set of ground literals PV in P to be unsatisfiable
(according to T). Then

LI V A1

L 2 V A 2

(2.4)

Lt V A,
A, v A2 ... V A, , when {L 1, L 2 ,... L,} is T-unsatisfiable

is a resolution rule that is sound and complete for the theory T. This rule includes binary
resolution as a special case, where L1 and L 2 are complementary literals.

For the modal logic K, this rule is rephrased as follows. Let r be a set of formulas of L;
by F* we mean the same formulas with the bullet operator uniformly replaced by a unary
function not appearing in r. Then, in the case of ground clauses,

[S]O1 V A1

[S] 2 V A2

[S]O, V A(2.5)-[s]b V A.-Sv A
A1 V A2 V ... V A, V A , when { ,€ .02 ,,-S}* is K-unsatisfiable.

is a sound resolution rule for K. If we are allowed to infer instances of any clause, then by
Herbrand's Theorem for L it is also a complete rule. Because it is a rule for the logic K,
we call this the BK-resolution rule.

G Implementation problems

The following problems must be solved to obtain an efficient implementation of BK¢-resolution.

23

9PrF IV W"WV VWV WV WV WVYV NV W\. '1')W- .*-'W V.FVFW Uf ~I . -

1. There is no decision procedure for unsatisfiability in quantified K.

2. Although we have given the resolution rule for the ground case, to be useful it must
also be able to handle free variables in the arguments of the modal atoms. In this
respect, B--resolution is more complicated than ordinary binary resolution, because
in general there is no most general unifier covering all possible ground resolutions.
For example, consider the following two clauses:

[S](Pea A Pb) -[S]P~x (2.6) :
-,[S]Pex

There are two substitutions for x which yield a resolvent (a/x and b/x), but no "most
general" unifier.

3. The search space is exponential in the number of modal literals. Consider the following
example:

[Sir V A,
[Slp v A2
[S](p D q) V A 3 (2.7)
-[Slq

A1 V A 2 V A 3
Only the last three clauses are needed for the resolution; indeed, including the first

clause will not lead to a proof if A, cannot eventually be resolved away. In order to
be complete in general theory resolution rules must be applied to a minimal set of
unsatisfiable literals. If there are n clauses containing one modal literal each, there
are 2' possible BK-resolutions that must be tried.

4. The above search space problem is compounded by the presence of variables, since
a given clause may have to be used twice. For example, there is a resolution of the
clauses

P V [S]POX %

-[S](P.a A Peb) (2.8)

yielding the resolvent Pa V Pb. However, this requires the first clause to be used twice
in the belief resolution rule (2.5), as follows:

Pa V [S]Poa
Pb V [S]P.b
-,[S](P.a A ob)

Pa V Pb

5. If there are several clauses with negative belief literals for the same agent, we may
duplicate our efforts in deciding unsatisfiability each time. Consider again example
(2.7), and suppose there is another clause with the negative belief literal -'(S](q A p).
A resolution using this clause and the positive belief clauses exists: however, in finding
it we duplicate the work involved in deciding that {pp D q,q} is unsatisfiable.

2-1

- " .o,'.

H A proof procedure for BK -resolution

I Semantic attachment

We now give a version of Bi,-resolution which treats the problems just nentioted. Tho
key idea is to replace the unsatisfiability condition of (2.5) with a recursive call to tli,
theorem-prover, using as input the arguments of the modal atoms. If the recursiv, call
is successful, then the resolution rule can be applied. Because it is not certain that th
call will terminate, processing of the call must be interspersed with other activities of t he
theorem-proving process. At any given time, the theorem prover must "time-share" it,
attention between ordinary binary resolution and multiple invocations of the senii-decisniol
procedure.

In addition, we structure the semi-decision procedure so that it accepts free variables ill
formulas, and eventually returns substitutions covering all proofs that can be found wit
instantiations of these variables.

The idea of showing validity or unsatisfiability of a predication by means of a coxnpi-
tation that reflects the intended meaning of the predicate is called semantic attarhcn(tt
(Weyhrauch [115]). In belief resolution, we compute the unsatisfiability of a set of modal
literals by performing deductions on their arguments. This process is a generalization of
semantic attachment in two ways. First, we show the unsatisfiability of a set of modal liter-
als, rather than a single atom. Second, by allowing variables, we are able to perform many
different instances of semantic attachment at once. Without this ability, belief resuition
would not be efficient in the presence of variables, because we would iave to first chose all
instantiation of the modal literals without knowing whether it would lead to a resolution
or not.

J An example

Our implementation of (2.5) has much in common with Kripke's [56] device of auxiliarv
tableaux. We define a structure called a view, which is an annotated instantiation of the'
theorem-proving process. Here is a short example to illustrate the basic idea. Assume initial
clauses:

1. [S]Pa
2. --,Pb
3. Qx V Px V [S]P.x
4. -[S](Pa A Pey) V Qy
5. - Qb

Note that we have added a bullet operator to each variable under the scope of a belief atom.
Ordinary resolution work as usual, for example. 2 and 3 can be resolved to Yield:

6. Qb v [S]Peb 2,3

25

N-

Clause 4 contains a negative belief literal, and we open a new view in an atteml)t to resolve

it:

view S, reins (O,Qy)

1. -'Pa V -,Pn(y) V Ans(O,y)

This is view for S, the agent of the belief. The clause is derived from -(Pa A Pey): not,
the substitution of the function n for the bullet operator. The Ans predicate keeps track
of the input free variable y; it also contains the additional argument "0" to indicat, that
it is connected to the remainder (reins) indexed by 0. If a proof is found in the view. th,
remainder Qy will be returned with an appropriate binding for y as a deduced clause of the
original proof.

We can add the arguments of positive belief atoms to the view. as in clause 1 (of the
original clause set). The view now contains:

view S, reins (O,Qy)

1. -'Pa v- Pn(y) V Ans(O,y)
2. Pa

These two clauses can be resolved, yielding:

view S, reins (O,Qy)
1. - Pa V -iPn(y) V Ans(O,y)
2. Pa
3. -'Pn(y)VAns(O,y) 1,2

Clause 6 has a positive belief literal, so we add its argument also:

view S, reins (O,Qy) (1,Qb)

1. -'Pa V -iPn(y) V Ans(O,y)
2. Pa
3. -'Pn(y)VAns(O,y) 1,2
4. Pn(b) V Ans(l)

C
Clause 4 contains an answer predicate with a new index. The remainder of the original
clause containing the positive belief atom (6) is inserted into the indexed remainder hi.
Note that the bullet operator was replaced with the same function i as in clause 1.

Clauses 3 and 4 resolve, yielding a clause containing just answer predicates:

view S, reins (O,Qy) (I,Qb)

1. -'Pa V -'Pn(y) V A ns(Oy)

2. Pa
3. - Pn(y) V Ans(O,y) 1,2
4. P,(b)v Ans(1)
5. A ns(0, b) V Ans(1) 3,A

26

%- -Z %

Now we gather up the remainders indexed by the answer predicates in the answer clause.
namely, Qb (index 1) and Qy (index 0). Using the substitution b/y generated by the Ans-
predicate, we return Qb V Qb (= Qb) as the result.

1. [S]Pa
2. - Pb
3. Qx V Px V [S]Pox
4. -,[S](Pa A Pey) V Qy
5. -,Qb
6. Qb v [S]Pob 2,3
7. Qb 1,4,6

Clauses 5 and 7 resolve to give the null clause, completing the proof.

K Views

Formally, a view is an annotated, finite set of clauses. The annotation is a list of remainders
to be used in returning a result from the view. We perform four operations on views.

Opening a view. Let C be a clause of the form -,[S]OV A. A view for S may be created.
Into it we insert clauses formed from P as follows. Let W be the set of clauses resulting
from putting (-0€)* into clause form, and let x be the free variables of 0. We insert
each member of W into the view, disjoining the answer predicate Ans(0, x). We also
add the annotation (0, A) to the remainder list.

Adding a positive belief literal. Let C be a clause of the form [S]o V A, and let x be
the free variables of 0. To any existing view for S we may add the clauses formed by
converting 0° to clause form and disjoining Ans(n,x), where n is a new index. (n. A)
is added to the remainder list.

Stepping a view. A resolution step may be performed in any view. This includes using
one of the four operations described here to create and manipulate embedded views. P

Returning an answer. If a clause containing only answer literals is deduced in a view,
we may assert a new clause in the proof containing the view. Let

Ans(O, a)V
Ans(nl,a')V ... VAns(nz,a')V

Ans(nk,ak)V ... VAns(nk,ak)

be the answer clause, and let A,(a) be nth remainder with a substituted for its free
variables (a may itself contain variables). The returned clause is:

27

,,'","< .'- -" "''-:--"-- -. ". "

,04

Ao(a)V
A,,(a')V -. VA,,(a,)

a)V .. VA(a)

Note that only one Ans(O,a)-predicate is allowed in the answer clause. Multiple
answer predicates are allowed for positive belief atoms, because more than one instance
of these atoms may participate in BK-resolution.

The use of the Ans-predicate allows us to perform a schematic proof. where the input ,

sentences can have free variables. At the end of a proof, the answer predicates give the
necessary instantiations of the free variables. Thus we have "lifted" B-resolutioll from the
ground case.

If these rules are added to a refutation system using ordinary resolution, we can prove
the following result. Let W be a set of clauses of L, and suppose there is a set of ground
instances WO such that BK-resolution derives the ground clause C. Then there is a sequence
of applications of the view rules on W that returns a clause C' having a ground instance C'.
Thus these rules faithfully implement BK-resolution, and together with ordinary resolution
form a sound and complete system for It".

L Agent terms

We have implicitly assumed that in modal atoms of the form [S]€, S is a ground term. F

However, we may easily lift to the more general case of variables, because the agent terni is
not in a modal context. There are two modifications to the rules. First, in opening a view.
x is a list of all variables in both 0 and S. Second, we may add a positive belief litera!

[S']lt to any view for S, if S and 5' have a most general unifier 0. When adding clauses
obtained from ip, we must also disjoin the answer predicate Ans(O.xO). This is to assure
that a result is returned only if all the participating clauses have unifiable agent terms.

M Controlling the search space

N Avoiding redundancies

We now address the implementation problems mentioned in the previous section. All of the
methods mentioned here maintain the soundness and completeness of BK-resolution.

1. The view rules split each possible BK-resolution into a sequence of effective stel) . ,-,,
These steps may be interspersed with other activities of the theorem-prover. includitng
ordinary resolution.

28

*"

. .SF WWWW W u .- .IMV;F WW.W :.. wtVIa, brv- k, 2 , -.

2. The use of answer predicates allows a schematic proof within views, so that free
variables in the input can be tolerated. Separate proofs are found whenever there
is no unifying instance of the input variables that allows a single schematic proof.
Consider again example (2.6). If we open a view for the negative belief atom, and add
the positive one, we get:

view S, rems (O,x)
1. -iPn(x) VAns(O,x)
2. Pn(a)
3. Pn(b)

There are two proofs, one with a/x and one with b/x. Note that if there are no free
variables or remainders when we add a clause, we can forgo the answer predicate.

3. We do not need to separately consider all possible combinations of modal literals that
could lead to BK-resolvents. The proof structure of the view takes care of this: only
the remainders of those clauses that participated in the proof are returned in the
result. Consider again example (2.7). We open a view for the negative belief literal,
and add the arguments of all three positive belief literals. The view looks like this:

view S, reins (1,A 1) (2,A 2) (3,A 3)
1. -nq
2. r V Ans(1)
3. p V Ans(2)
4. -ip V q V Ans(3)

Two resolutions yield Ans(2) V Ans(3), returning the result A2 V A3. Although the
clause [Sir V A, was added to the view, it was never used in the proof.

4. Although several instances of the same clause may be needed to form a BK-resolvent.
we need only add its belief literal once to the view. Consider again example (2.8). We
open a view for the negative belief literal, and add the positive one, obtaining:

view S, rems (1,Px) a'
1. nPn(a) V " Pn(b)

2. Pn(x)VAns(1,x)

By two resolutions of the second clause, we get:

view S, rems (1,Px)
3. -,Pn(b)VAns(1,a) 1,2
4. Ans(1,b)VAns(1,a) 2,3

This is a particularly nice result, since the necessity of using multiple copies of a clause
in resolution gives rise to nasty control problems.

29

N % N' . VV%,J

5. With a little care in indexing the Ans-predicates, we can eliminate the redundancies
caused by performing the same deductions on the arguments of positive belief literals
in different views. Suppose we create only one view for each agent S, but we allow
any negative belief literal -,[S]b to be added to this view, in the same way as positive
literals are added. We keep track of the answer index so that that we can identify it
as arising from a negative belief literal. Resolution are performed as usual within the
view. However, to return an answer, we apply the following condition: exactly one
Ans-predicate arising from a negative belief literal must appear in the answer clause.
For example, consider the following clause set:

1. [S]Vx.Px
2. [S](Vx.Px D Qx)
3. Ao V -,[S]Qa
4. A, v -,[S]Qb

We open a single view, inserting all belief literals:

view S rems (0,Ao) (1, A,)
1. PX
2. -,Px V Qz
3. -,Qa V Ans(O)
4. -,Qb V Ans(1)

Resolving 1 and 2 yields Qx, which can be resolved separately against 3 and 4, re-
turning A0 and A,, respectively. However, any resolutions which contain both 3 and
4 as ancestors will have Ans(O) and Ans(1) predicates, and so will not generate any
result clauses.

The interesting point to note here is that we need open only a single view for each
* agent, instead of each negative belief literal. The view acts as a deductive testbed in

which we try to show different combinations of belief and nonbelief are inconsistent
for the agent.

It is possible to generalize this strategy to different agents sharing a set of common
beliefs: a single view is created for all the agents. This is particularly useful when one
has to deal with agent terms having variables, as in the following clause set:

1. -'PX V [x]qi
2. ",Px V [x](q D q2)

n. -iPx V [x](q,, D q,)
n+ 1. Pa
n+2. Pb
n + 3. -[a]q,. V -[b]q,n

(It is clear that a and b share many of the same beliefs, and that a great deal of effort
will be saved if we assert these beliefs in the same view.

30

EA

0 Heuristic control

We have investigated several refinements of the view rules that do not maintain complete-
ness, but may be useful heuristic methods for controlling the size of the search space.

The first is to limit the depth of recursion of views. In a particular problem domain we
can often judge whether or not it is useful to reason about agents reasoning about agents
reasoning about agents ... and so on. By refusing to open views that are embedded beyond
a certain depth, we can control inferences about nested reasoning. More fine-grained control
is also possible, if we know that certain types of nested reasoning will be more useful than
others. For example, if introspective reasoning is not required (an agent reasoning about
his or her own beliefs) then we can refuse to open a view for S if it is embedded in a v-iewv

A second method of control is to integrate the view rules into a set-of-support strategy.
The most obvious method is to open a view only for negative belief literals in the set of
support. The rationale is that we often have a large number of facts about an agent's beliefs.
and we are trying to prove from these that the agent has some other belief. A negative
literal -,[S]O will appear in the set of support when we are trying to prove that S has the

Unlike in ordinary resolution, this set-of-support strategy is not complete because it
does not permit inferences about lack of belief. For example, we cannot infer -'[S]p from
[S](p D q) and -[S]q, because there are no negative belief literals in the set of support.

P Implementation

The view rules for quantified modal K have been implemented using a nonclausal connectiou-
graph theorem prover developed by Stickel [1091. The implementation itself is of interest.

especially the method of sharing the attention of the theorem-proving process between views

(see Geissler and Konolige [27]).

In addition, we have incorporated theories of common belief, and a simple modal form
of the situation calculus (McCarthy and Hayes [78]) as a logic of time. We have derived an
automatic proof of the Wise Man puzzle that illustrates these ideas, showing the interaction
between belief, action, and time. The proof is conceptually simple and easy to follow.

Q Other resolution systems for modal logics

Currently there are at least two other approaches to using resolution in a quantified modal
logic, both for temporal logics. Farifias-del-Cerro [24] describes a resolution method for
restricted languages in which there are no quantifiers in modal contexts. Such languages
are not suitable for knowledge and belief, because it is impossible to express, for example.
the statement "Ralph knows that someone is a spy."

31

% " ' t "
" ° "

%
"

" "" "" "" " "
"' '" " " "" "" " ""

" '
" " ' ' " " " ' ' - ' ' ' ' ' ' " " ' '' " "-"

" '

Abadi and Manna [1] derive sound and complete nonclausal resolution rules for propo-

sitional temporal logics, and are working on extending their techniques to the quantified
case.

This work is interesting because it incorporates induction rules, a necessity for complete-

ness in temporal logics containing both next state and always operators. When belief logics
are extended to contain common belief operators, a similar problem surfaces (see Halpern
and Moses [38]). We may be able to adopt a solution analogous to those found for temporal

logics; currently we have only incomplete resolution rules for common belief.

A major difference between temporal logic resolution and the methods presented here
is the use of semantic attachment. The temporal resolution rules are binary rules that

transfer arguments in and out of the scope of modal operators; eventually a form results
that can be resolved away. This type of resolution does not seem to result in perspicuous.

easily-controlled proof methods. 4.

Q.1 Acknowledgements

We are grateful to Mark Stickel for his help in modifying the connection-graph theorem
prover.

3 2

.'

I-

.32%

I..

.

%

4'.

Chapter 3

REPRESENTING DEFAULTS
WITH EPISTEMIC CONCEPTS

This section was written by Kurt Konolige and Karen Myers. It will appear as a Stanford
and SRI Technical Note.

A Introduction

Reasoning about defaults - implications that typically hold, but which may have exceptions
- is an important part of commonsense reasoning. In this paper we address the problem of
arriving at a theory of defaults that is in accord with our general intuitions, and expressing
it in formal terms.

Where do intuitions about defaults come from? Certain aspects of defaults, for example.
their defeasibility, are obvious from the vay in which we talk about them. Other aspects
of defaults relate to interactions among competing defaults; the presence of hierarchies
introduces certain subtle constraints in adjudicating among these. In the first part of the
paper, we will present various parts of a theory of defaults that we believe pose significant
representational problems.

There have been several formalizations of some theory of defaults in the Al literature.
Reiter [94] proposed a formal system called default logic, which uses a form of inference rule-
that refers to consistency in the resulting theory. McDermott and Doyle [79] use a modal
operator for the same purpose, and call their system nonmonotonic logic. Autoepistemic
logic [831 is a clarification (from a semantical point of view) and reconstruction of nonmono-
tonic logic using explicit epistemic concepts. Levesque [67] also uses an autoepistemic logc
called KFOPC for reasoning about defaults. Finally, defaults have been formalized using
the circumscription schema of McCarthy [751, which involves only first-order constructs.

All of these formalisms exhibit the property of inferential nonmonotonicitv: a formula
p which follows from a set of formulas F may not follow from a strictly larger set I" (in-
deed, its negation -'p may be a consequence). This fact is exploited to represent of some

33
U,.

aspects of defeasibility. However, other desiderata for a theory of defaults are not automatic
consequences of these formalisms.

We concentrate on expressing our theory of defaults within autoepistemic logic, 1)v
providing a translation from the statement "typically A's are B's" into sentences of the h ,ic'.
As we will show, this translation is faithful to our intuitions about the several diffreiit w;tv,
in which defaults can be defeated, as well as the constraints introduced by hierarchie.

There is a close connection between our derived constraints on defaults in the presence
of hierarchies and the work of Touretzky [113] on inheritance in networks. We argue that
Touretzky's inferential distance algorithm is a strengthening of our condition of hierarchic
defeat, and as such, is unsound with respect to our theory.

B Defaults

By default we mean an assumption about the world that is made on the basis of current
(incomplete) beliefs, and which may be contradicted by acquired information. There are
many types and uses of defaults in Al; for example, the so-called closed-world assumption is
one type of default, in which it is assumed that a database contains all of the true positive
instances of relations. Here we are concerned with commonsense reasoning, expressed by
statements of the form "typically A's are B's" (we abbreviate this as A -- B). As Reiter and
Criscuolo [95] have pointed out, there are usually two connotations to the word "typical."
One is probabalistic: saying "typically birds fly" entails that most birds fly. There is also a
prototypical notion, in the sense that, having no contradictory information, we are willing
to assume that any given bird is an instance of the prototypical bird that flies. This notion
of prototype is part of the underlying intuition behind the concept of frames [82], in which
individuals have properties by virtue of being prototypical instances of some class.'

The idea that we can assume any given bird to fly, barring evidence to the contrary, is
basically an epistemic one. To use a term from the philosophical literature, if we believe
Tweety is a bird, we are prima facie justified in believing Tweety flies [93]. This justification
is defeasible: an explicit belief that contradicts the conclusion will nullify the justification.
Any proposition that, if believed, will nullify a default, is called a defeater of the default.

There are several subtle aspects of defeasibility and defeaters that are important for any
representation of defaults; we discuss these in the next subsection. What defeaters actually
exist for a given default relative to a domain of application is an important empirical study.
It is useful to try to find general principles that hold across many different domains. 'We
will motivate a very important constraint on defaults in the domain of property inheritence
in hierarchies, which is of some interest to Al.

'The notions of "most" and prototype need have no necessary connection. A prototype is what one is
willing to assume in the absence of additional information; obviously, considerations of action or purpose will
enter here. For instance, one would be wise to assume that the prototypical mushroom is poisonous, even
though most mushrooms are not. Langlotz [601 has recently attempted to relate the concept of prototype
to that of utility in decision theory. Most of the arguments raised in this paper require onl. that typical"
refer to prototypes, so they are applicable even when a minority of A's are B's.

34

A,%

B.1 Three types of defeat

Consider the reasoning that might be involved in deciding whether a car will start. One
possible default is

If the car started yesterday, then it will start today. (3.1)

This is only a prima facie rule because there could be problems with the car that arose
overnight - someone could have stuffed a potato in the tailpipe. It is known that whenever
there is a potato in the tailpipe the car will not start. So believing that there is a potato in
the tailpipe is a defeater for the default, because it contradicts its conclusion. Pollock [93]
has called this Type I defeat.

Another type of defeat occurs if the default as a whole is undermined, rather than its
conclusion. For example, suppose that the car started yesterday, but only because it was ,
jump-started. We can now no longer conclude that the car will start today, even though
the car started yesterday. The conclusion of the default has not been contradicted, because
the car may indeed start; but the default is no longer applicable. This kind of defeat is
called Type II by Pollock.

An interesting difference between these two defeat types occurs in the presence of mul-
tiple defaults supporting the same conclusion. Suppose the car has a dashboard indicator
showing the state of its electrical system. Then another default might be

If the electrical system is ok, the car will start. (3.2)

Obviously, this default will not be defeated even if the car was jump-started. A Type I -
defeater, on the other hand, is a defeater for every prima facie rule whose conclusion it
contradicts. %

It is possible to distinguish a third type of default, which combines the characteristics
of the first two. Suppose the car develops an intermittent electrical fault, which does not
register on the dashboard indicator. The fault is a random process, and it is impossible
to know beforehand whether the car will start on any particular occasion. 2 Such a fault
defeats both defaults (3.1) and (3.2) above; indeed, it defeats any default whose conclusion
is that the car starts. It thus shares this property with Type I defeaters. But it also
has a property of Type II defeaters, in the sense that it does not directly contradict the
conclusion; the car may indeed start. We call this type of defeat Type III. It presents the
hardest representational difficulties, since it requires defeating all defaults of a certain type.
without contradicting their conclusions. -'

B.2 Competing defaults and hierarchies

It often happens that defaults will compete or conflict with one another. A standard example
is the two defaults:

'One author has actually had experience with such a car.

35

3. "f"%% %

Typically Quakers are pacifists. (3.3)
Typically Republicans are not pacifists.

Nixon, a known Quaker and Republican, could be judged prima facie to be either a pacifist
or not; if the conclusion of one default is accepted, it is a Type I defeater of the other. Such
competing defaults must usually be adjudicated on the basis of domain evidence: whether
the typical Republican Quaker a pacifist or not is a matter of empirical discovery. However.
there are cases in which competing defaults can be resolved on the basis of hierarchic
information.

Suppose A is a subset of B. Knowing that an individual a is in A is more informative
than knowing she is in B, since the latter is entailed by the former. Hence any default whose
antecedent is satisfied by members of A should prevail over a conflicting default satisfied by
B. Examples of this sort abound - a standard one in the literature is drawn from biological
taxonomy [22]. Molluscs typically have shells; cephalopods, a type of mollusc, typically do
not; but nautili, a subclass of cephalopods, typically do. Obviously, being a cephalopod is
a defeater (Type II) for the default that molluscs have shells, and similarly being a nautilus
defeats the cephadopod default. This example is an instance of a general principle, which
we phrase as follows. Let A C B mean that A is a proper subset of B. In first-order logic, A
and B are unary predicates, and A C B abbreviates Vx [(A(x) D B(x)) A -,(B(x) D A(x))].

Principle of hierarchic defeat. If there are two defaults A -* C1 and B -*

C-2 , such that (1) A C B and (2) C1 and C2 are inconsistent, then A is a
Type II defeater of the default B - C 2 .

C and C2 are inconsistent if the negation of one is the first-order consequence of the other.

The plausibility of this principle can be argued on probabalistic as well as intuitive
grounds. Let us assume that the "typical" entails a certain probability threshold, so that
A - C1 implies that more than t% of the A's have the property C1. Now consider the set
composed of both A's and B's; in order for it to be a default that a member of this set has
property C2, it must be that at least t% of the individuals in this set have the property.
This cannot be the case, since the set A U B is just A, and t% of the A's have property C1,
which excludes them from having property C2.

It is interesting to note that a strengthening of the principle, in which the premise A C B
is weakened to A - B (not all A's need be B's), cannot be justified on similar probabalistic
grounds. In this case, even though most A's have property C1, a majority of those A's
which are also B's may have property C2 . Touretzky's inferential distance algorithm [113]
for deciding among competing defaults, which entails this stronger principle, is thus incorrect
in certain cases. For example, consider the following set of defaults:

A-C
A - A A D (3.4)
A A D - -C.

36

Mi.t

"=MWM71 WK. V V 1W WU Nh'r W Iu W M MUWrUIC V7 VWY WW1WWV 11VWVVV17 F VxW WIYI V ,-~~ -~-" ..

Now by default an individual a who is A will also be A A D, which is a subset of A. By

the hierarchic defeat principle, we know that the default A A D defeats the default A - C
for a. But by the inferential distance algorithm, the A - C will be applied, so that a
will both A A D and C. The reason inferential distance is correct in the examples givenl in
[113] is that the default A - B is always chosen so that A is a subset, or nearly so. of B.
However, there is no necessary subset relation between A and B given the (lefalilt: ill this
counterexample we have chosen a case where B is a subset of A.

B.3 Correct inference

The problem of correct inference in a default theory is this: given an initial belief set of
"hard facts" and defaults, what additional inferences should an ideal agent make? If there
are no defaults, the agent should infer all the logical consequences of the hard facts. But the
notion of correct inference is complicated by the presence of defaults, because the inferences
that are sanctioned by prima facie rules are only plausible, and can be defeated. Hence
correct inference can only be defined by reference to the total set of inferences that it is
possible to make. In addition to infering the logical consequences of her beliefs, an agent,
at a minimum, should infer the conclusion of any default whose premises are bvliefs, and
which is not defeated by any possible inference the agent could make. This comes from the
very nature of defaults as prima facie rules, which must apply if there is no information
which defeats them.

When there are several conflicting defaults that could be applied, as in the case of the
Nixon example above, two possible choices for inference are to include a consistent set of
default conclusions (brave inference in the terminology of [21]), or to exclude them entirely
(cautious inference).

C Representation

In this section we take up the issue of representing our default theory in a formal system.
General,-, this involves showing how to translate default statements like A - B into sell-
tences of the formal system. There are two criteria on which to judge the appropriateness

C of the formalization:

1. The translation should be local.

2. The formal system should produce all and only the correct inferences.

The first criterion concerns the way in which statements of the form A - B are repre-
sented in the formal system. Suppose we are translating a set of defaults and "hard facts"
V into sentences of the formal system. A local translation (see [54]) is one in which each
default statement can be effectively translated into one or more sentences without regard
to any other statements in V. Much of the difficulty in representing defaults is finding a
local translation that preserves the defeasibility characteristics of defaults in the presence
of other information.

:37

% . .V. . . .%

IIWWU%~i~W j4i v - j ,, ,' WV y . 4 W- M

C.1 Previous formalizations

As noted in the introduction, a number of formalizations exist for some notion of "default.-
McCarthy [75] proposes the introduction of a predicate ab for "abnormality," and represents
A - B

Vx.A(x)A-iab(x) D B(x). (3.5)

Inference within the formal system is defined as the sentences true in all models minimal
with respect to the ab predicate.

This formalization handles both Type I and II defeat quite nicely. For the latter, one
asserts that an individual is abnormal, and the default is blocked without asserting anything
that contradicts its conclusion.

There are some problems with this approach; Etherington [21] notes that in the absence
of any information about particular birds, it implies that all A's are B's, which is clearly
not a correct inference from the original default. From our point of view, a more serious
shortcoming is that representing Type III defeat is problematic - there is no way to defeat
all defaults whose conclusion is that an individual is B, without saying the individual is not
B, or enumerating all of the associated abnormality predicates. This is because Type III
defeat is really expressed by epistemic concepts, which are absent from this formal system.

Other approaches to defaults (default logic, nonmonotonic logic, KFOPC) have concen-
trated on representing only a single type of defeat, Type I. Although it is clear that the
other types of defeat can be represented (for example, Reiter and Crisculo [95] show how to
express Type II defeat within default logic), there has been little concern to provide a local
translation of statements about defaults, or to find and represent general principles like
hierarchic defeat. An exception to this is Levesque's work in KFOPC [67], in which there
is a deliberate attempt to preserve locality in the translation. Our idea for formalization is
similar in spirit to his: we introduce an ab predicate into a logic which explicitly represents
epistemic concepts.

C.2 Overview of AE logic

AE logic is a formalism for modeling an agent with the power to reason about its own
beliefs. The language is first-order, augmented by the modal operator L. The intended
meaning of a formula Lo is that 0 is a belief of the agent. In this logic, an agent with
an initial set of beliefs A would ideally believe a set of sentences T referred to as the AE
expansion of A (see [83] for a comprehensive presentation). In addition to being logically
closed, an AE expansion T has the following properties:

[(AEl)] P E T iff LPET ET
[(AE2)] P V T iff -LP E T (3.6)

38

~. ~. -~ F k M7--

,.z

The proof-theoretic characterization of AE expansions is given as a fixed-point defini-
tion. An expansion T is the set of all logical consequences of a base set A and the set
of assumptions -'La, where a ' T. Informally, one can consider arriving at T by making A
oracular assumptions about what is not believed, and adjoining them to A.

The potential for multiple expansions of an initial set of beliefs exists due to the fixed-
point nature of AE expansions. Consider for instance the case where the base set A =
{-,LP D Q,-'LQ D P}. Since nothing is known about P, we can postulate an expansion .-

that does not contain P. By (AE2) then, it follows that that -,LP is in the belief set.
and hence so is Q. Analogously we can apply the same argument to Q, producing an
expansion that contains (among other things) -"LQ and P. This capability will introduce
some difficulties in the formalization of defeat.

C.3 Formalizing Types I, II and III defeat
,..

Consider now the canonical default: "Typically a's are -y's". This statement can be repre-
sented by the following implication schema:

D. La(x) A -L(x) D y(x)

We will refer to D as the default rule for the given intuitive default. Here a(x) and (x)
are non-modal formulas applied to some named individual.

The introduced proposition ¢ serves as the defeater for the default in that the appli-
cability of D depends on a lack of belief in 0. Any derivation of 0 in an expansion would
abrogate the default conclusion of -(x) from a(x) . The three types of defeat are distiii-
guished in their representations by the manner in which they produce the derivation of the
defeater 0.

A Type I defeat, by definition, results when the negation of the conclusion of a default is
derivable. The following implication schema thus captures the notion of this type of defeat:

1,1 --t(x) D O(x) ".

Type II defeat corresponds to the over-riding of a default as a whole, independent of
the status of the conclusion. Typically, some sentence 3(x) is asserted to cut the support ',-
of a(x) for 7(x). This is represented simply as:

DI; 3(z) D o(x)

With defeats of Type III, a default is blocked as a result of disbelief in the truth of its

conclusion. Hence Type III defeat is characterized by:

TIII. -L-,,(x) D O(x)

39

.'

Note how this translation process for defaults and defeats satisfies the locality property
advocated earlier.

Another point of significance is the fact that DI and DIII are integral parts of tho
representation of the default. Without their inclusion, certain initial belief sets have no
expansions. For example. the base sets .4= {D[a], L7y(a),a(a)} and A= {D[a],- ,(a).o(a))
have no AE expansions (D[a] is the instantiation of schema D with x replaced by a).

C.4 The car example

As an illustration of these concepts, consider the set of defaults and assertions about cars
introduced in the previous section:

(1) If the car started yesterday, then typically it will start today.

(2) If the electrical system is ok, the car will typically start.

(3) If there is a potato in the tailpipe, the car will not start.

(4) If the car was started yesterday by jump-starting it, then the fact that it started
yesterday has no bearing on whether or not it will start today.

(5) If the car has an intermittent electrical fault, then there is no way of knowing whether
or not it will start today.

In the list above, (1) and (2) are defaults while the remainder are strict implications.
This set can be formalized as:

D(1) LStart-yesterday(x) A -iLOI(x) D Start(x)
D (2) LOK--electrically (x) A --L02(x) D Start (x)
.A(3) Po ta to- in- t ailp ipe (X) D -,Start(x)

A(4) Jump-started-yesterday(x) D 01 (x)
.A (5) Int erm it t en t-faulIt (r) D -L Sta rt (x) A - L -1Sta rt (x)

(*,"LStart(x) V ".,Start(x) D OI(x) A 02(x)

The formulas D(1) and D(2) are the default rulescorresponding to the defaults (1) and
(2) while the formulas .A(3)-A(5) are translations of the remaining assertions. The fo:mula
(*) combines the instantiations of the Types I and III defeat schemas P1 and Pi1 for D(l)
and D(2). A 4 is an instance of Type II defeat of P(l).

C.5 The multiple expansions problem

This approach to representing defaults has the side-effect of licencing undesirable oxpan-
sions. As an illustration, consider the case where A= {D(a], DIII[a]. a(a)) for sone indi-
vidual a. There are two expansions for this A. In the first, the defeater o(a) does not hold.

40

; .. .- .. -.- ..:. ; .: .- , :. ., ,. .: .? ..;. .: , : .: . .. , .- , ., :., ,, , ... , , -,. :

Io

*1

thus -,LO(a) E T and -y(a) is concluded. There is a second expansion in which -'L-,(u) is
assumed to hold, thus resulting in a Type III defeat of the default. Tis~ latter expansion is
counter-intuitive - in a sense we are defeating the default by assurning that its conclusion
is not in the belief set. Clearly this violates one of the principles of correct inference for de-
faults, namely to allow the default conclusion unless there is explicit evidence conitradicting
it. The problem arises in expansions where the lack of belief in the conclusion (-iL-J(a))

takes precedence over a lack of belief in the defeater (-iLOb(a)).

From another perspective, defeaters such as O(a) (and hence defeat itself) should be
earned rather than derived from arbitrary assumptions of disbelief. The unwarranted as-4.
sumption of -iL-y(a) directly produces a Type III defeat of this second default via the
instantiated VIII schema. Clearly one should reject expansions of this nature; we will refer
to such expansions as unsanctioned.

AE logic provides no mechanism by which the preference of assumptions delineated
above can be enforced. As a result, we appeal to extra-logical criteria in order to eliminate
unsanctioned expansions.

Define a disbelief atom to be any formula preceded by the -~L operator, and let > be
a a binary relation over these atoms. We will use this relation to indicate a partial order
of preferences among disbelief atoms, and hence will refer to > as the preference relation.
Define a preference set P to be a set consisting of any number of instances of the > relation,
ie. P= f{-,Lori > -iLri I i E 1}, for some index set I. An AE expansion T for a given A will
be said to satisfy P iff for each i E I either:

1. -'Lrj V A, or

2. oi is legitimately derived with respect to P and A

Legitimate derivation of ai with respect to P and A may be expressed informally as OaL
being a logical consequence of A and only those assumptions of disb~elief atoms which are
not lower in the preference ordering than -,Lori.3

In essence, legitimate derivation of a formula ai with respect to a given set of preferences
corresponds to the notion of ori not being derived from less-preferred assumptions of disbelief.
For a given base set A of beliefs containing the defaults I csi(x) A -Loi(x) D) j(.) i C- I)
this definition can be used to filter out unsanctioned expansions, by establishing P as the
set P= {-i$(x) > -'Lyi() I i E I}.

0.6 Hierarchic defeat

The principle of hierarchic. defeat can be expressed in AE logic by considering pairs of

5..

defaults. Let D, = A -~ C1 and V2 = B - C2 be two defaults; for every such pair we add
the schema:

3 A more technical presentation of legitimate derivation is not possible without a lengthY digression into
te mechanics of AE logics - see [54] for further details.

41

(A C B A -,(CI(X) A C2 (X))) D 02 (W)• (3.7)

P2 will be defeated if A is a subset of B, and their conclusions conflict for some individual.

The schema (3.7) is unfortunately not a local translation of default statements, because
it requires considering every pair of defaults. Still, it is almost local: it does not requirv
looking at every default, or any of the "hard facts."

D Conclusion

We have presented some parts of a theory of defaults, including a principle of adjudication
under hierarchic inheritance. This theory can be expressed by an almost-local translation
into autoepistemic logic, using a combination of epistemic concepts and the introduction of
defeater predicates. The use of epistemic operators in the formalization seems necessary if
we are to faithfully represent various types of defeat.

42

%:%

RIrWw 1W VW 11111 NOW~ F*A M9 PW 7%VAJ 7WW VA fIUW VA VVA VA WA VA rA xA r.P.AR ID X JLJ9 FLM All IVI~~rJ1,, ~

ai

Chapter 4

REASONING ABOUT ACTIONS
IN MULTIAGENT DOMAINS

This work was originally reported at the Workshop on Planning and Action in Timberline.
Oregon in July 1986. It was written by Michael Georgeff.

Any approach to reasoning about and coordinating plans in dynamic, multiagent do-
mains requires that we have available a model of action specifically suited to such domains.
Classical models of action are not well-suited: in particular, they do not allow multiple ac-
tions (or events) to be performed simultaneously, except through the use of some interleav-
ing approximation [90]. This considerably complicates reasoning about dynamic multiagent
domains, especially where causality is involved.

During the most recent phase of this project we developed a model of action suited to
multiagent domains that properly modeled the simultaneous performance of actions and
events. The basis of this model is described below. .

A Introduction

In developing automatic systems for planning and reasoning about actions, it is essential
to have epistemologically adequate models of events, actions, and plans. Most early work
in action planning assumed the presence of a single agent acting in a static world. In the
formulation of these problems, the world was considered to be in one of a potentially infinite
number of states and actions were viewed as mappings between these states [25,70,78,90].
However, the formalisms developed did not allow for simultaneous action, and as such are
inadequate for dealing effectively with most real-world problems that involve other agents
and dynamically changing environments.

Some attempts have recently been made to provide a better underlying theory of action.
McDermott [80] considers an action (or event) to be a set of sequences of states and describes
a temporal logic for reasoning about such actions. Allen [3] adopts a similar view and
specifies an action by giving the relationships among the intervals over which the action's

43

conditions and effects are assumed to hold. Related formalisms have been developed by
Dean [19], Pelavin [91] and Shoham [103].

A quite different and potentially powerful approach has recently been proposed by Lan-
sky [61]. Instead of modeling actions and events in terms of world states, she regards events
as primitive and defines states derivatively.

In this paper, we shall examine some of the problems that arise in the representation
of events, actions, and plans in multiagent domains, and describe a model of events and
actions that overcomes most of these problems.

B Actions and Events

We consider that, at any given instant, the world is in a particular world state. Each world
state consists of a number of objects from a given domain, together with various relations
and functions over those objects. A sequence of world states is called a world history.

A given world state has no duration; the only way the passage of time can be observed
is through some change of state. The world changes its state by the occurrence of events
or actions.1 An event type is a set of state sequences, representing all possible occurrences
of the event in all possible situations [3,80]. Except where the distinction is important, we
shall call event types simply events.

We shall restrict our attention herein to atomic events. An atomic event is one in which
each state sequence comprising the event contains exactly two elements; it can thus be
modeled as a transition relation on world states. The transition relation of a given event
must comprise all possible state transitions, including those in which other events occur
simultaneously with the given event. Consequently, the transition relation of an atomic
event places restrictions on those world relations that are directly affected by the event, but
leaves most others to vary freely (depending upon what else is happening in the world).
This is in contrast to the classical approach, which views an event as changing some world
relations but leaving most of them unaltered.

For example, consider a domain consisting of blocks A and B at possible locations 0
and 1. Assume a world relation that represents the location of each of the blocks, denoted
loc. Consider two events, move(A, 1), which has the effect of moving block A to location 1,
and move(B, 1), which has a similar effect on block B. According to the classical approach
[90], these events would be modeled as follows:

move(A, 1) = {(loc(A,0),loc(B, 1)) - (loc(A, 1),loc(B, 1))
(loc(A,0),loc(B,0)) - (loc(A, 1),loc(B,O))}

and similarly for move(B, 1).

Every instance (transition) of move(A, 1) leaves the location of B unchanged, and sim-
ilarly every instance of move(B, 1) leaves the location of A unchanged. Consequently, it is

'From a technical standpoint, we shall use these terms synonymously.

44

V-,.

impossible to compose these two events to form one that represents the simultaneous perfor-
mance of both move(A, 1) and move(B, 1), except by using some interleaving approximation
[90].

In contrast, our model of these events is N

move(A, 1) {(loc(A,0),loc(B, 1)) - (loc(A, 1),loc(B, 1))
(loc(A, 0), loc(B, 1)) - (loc(A, 1), loc(B, 0))
(loc(A, 0), loc(B, O)) -* (loc(A, 1), loc(B, 1))
(loc(A, 0), loc(B, 0)) - (loc(A, 1), loc(B, 0))}

and similarly for move(B, 1).

This model represents all possible occurrences of these events, including their simultane-
ous execution with other events. For example, if move(A, 1) and move(B, 1) are performed
simultaneously, the resulting event will be the intersection of their possible behaviors:

move(A, 1)llmove(B, 1) = move(A, 1) n move(B, 1)
= {(loc(A,0),loc(B,0)) -, (loc(A,1),loc(B, 1))}

Thus, to say that an event has taken place is simply to place constraints on some world

relations, while leaving most of them to vary freely.

Of course, to specify events by listing all the possible transitions explicitly would, in
any interesting case, be infeasible. We therefore need some formalism for describing events
and world histories. The one we use here is a generalization of the situation calculus [78].
although most of our remarks would apply equally to other logic-based formalisms.

We first introduce the notion of a fluent [78], which is a function defined on world states.
If we are using predicate calculus, the values of these fluents will range over the relations.
functions, and objects of the domain. For example, the location of a given block A is a
fluent whose value in a given state is the location of block A in that state. If, in a state s,
the location of A is 1, we shall write this as holds(loc(A, 1), s). Expressions denoting fluents
that range over objects are often called designators, with a distinction drawn between those %
whose denotations are constant over all states (so-called rigid designators) and those whose
denotations may vary (nonrigid designators).

As in the single-agent case, the well-formed formulas of this situation calculus may
contain logical connectives and quantifiers; they can thus express general assertions about
world histories. However, we do not use a "result" function to specify the state resulting
from an event (or action). The reason is that, in our formalism, events are not functions
on states but rather relations on states, and the occurrence of an event in a given state
need not uniquely determine the resulting state. Therefore, for a given world history w
containing state s, we let succ(s, w) be the successor of s, and use a predicate occurs(e,s)
to mean that event e occurs in state s. This formulation, in addition to allowing a wider
class of events than in the standard situation calculus, also enables us to state arbitrary
temporal constraints on world histories [91].

In reasoning about actions and events, one of the most important things we need to
know is how they affect the world - that is. we must be able to specify the effects of actions
and events when performed in given situations. We can do this as follows.

45

- 7~- J P I* -%- *:A :, 2 . -

Let 0 and 4, be relational fluents. Then we can describe the effects of an event e with
axioms of the following form:2

Vw, s . holds(o, s) A occurs(e, s) D holds(iP, succ(s, w)) (4.1)

This statement is intended to mean that, if 0 is true when event e occurs, , will be true
in the resulting state. It has essentially the same meaning as k D [e]b in dynamic logic [41].

With axioms such as these, we can determine the strongest [provable] postconditions
and weakest [provable] preconditions of arbitrary events and actions. These can then be
used to form plans of action to accomplish given goals under prescribed initial conditions
[73,99].

It is important to note that axioms of the above form cannot characterize the transition
relation of any given event completely, no matter how many are provided. For example,
with such axioms alone, it is not possible to prove for any two actions that they can be
performed concurrently (nor that a plan containing concurrent actions is executable). We
shall have more to say about this later.

Of course, we are often able to make stronger statements about actions and events than
given above. For example, the event move(A, 1) satisfies

Vw, s . occurs(move(A, 1),s) = holds(loc(A,O), s) A holds(loc(A, 1), succ(s, w))

This specification characterizes the event move(A, 1) completely - there is nothing more
that can be said about the event or, more accurately, about its associated transition relation.
(The importance of this distinction will be made clear when we consider causal relationships
among events.)

Thus, at this point in the story, the frame problem [42,78] does not arise. Because
events, per se, need not place any restrictions on the majority of world relations, we do not
require a large number of frame axioms stating what relations are left unchanged by the
performance of an event (indeed, such statements would usually be false). In contrast to the
classical approach, we therefore do not have to introduce any frame rule [42] or STRIPS-like
assumption [25] regarding the specification of events.

C Independence

We have been regarding atomic actions or events as imposing certain constraints on the
way the world changes while leaving other aspects of the situation free to vary as the
environment chooses. That is, each action's transition relation describes all the potential

2 We have simplified the notation in two ways. First, without stating so explicitly, we assume throughout
that s and succ(s,w) are elements of w. Second, we shall often use event types to stand for an event instance
of the given type. Thus, axiom 4.1 should be viewed as shorthand for the following axiom, where , is an
event instance:
Vw, s, t . element(s, w)Aelement(succ(s, w), w)Atype(t, e)Aholds(, s)Aoccurs(l, s) D holds(v,, .q ucc(s, iv))

46

changes of world state that could take place during the performance of the action. Which
transition actually occurs in a given situation depends, in part, on the actions and events
that take place in the environment. However, unless we can reason about what happens
when some subset of all possible actions and events occurs - for example, when the only
relevant actions being performed are those of the agent of interest - we could predict very
little about the future and any useful planning would be impossible.

To handle this problem, we first introduce the concept of independence. We define a
predicate indep(p,e,s), which we take to mean that the fluent p is independent of (i.e., not
directly affected by) event e in situation s. Unlike classical models of actions and events,
this does not mean that, if we are in a state s in which p holds, p will also hold in the
resulting state. Rather, if p is independent of e in some state s, the transition relation
associated with e will include transitions to states in which p does not hold, as well as ones
in which p holds, while not constraining the values of any other fluents in the resulting
state.3 In the general case, we have to specify independence for all three types of fluents:
the relation-valued, function-valued, and object-valued.

For example, we might have

Vs, x, y . holds(x y A, s) D indep(loc(x, y), move(A, 1), s)

This axiom states that, for all x and y, loc(x, y) will be independent of event inove(.4, 1),
provided that x is not block A.

In our ontology, a world state can change only through the occurrence of events. Fur-
thermore, in keeping with our intuitive notion of independence, events that are independent
of some property cannot influence that property. We therefore have

Vw, s, €. holds(o, s) A -iholds(o, succ(s, w)) D 3e . (occurs(e, s) A -'Indep(o e, s))(4.2)

From this we can directly deduce the following law of persistence:

Vw,s,¢ . holds(k,s) AVe . (occurs(e,s) D indep(O,e,s)) D holds(k,succ(s, w)) (4.3)

This rule states that, if we are in a state s where some condition ¢ holds, and if all events
that occur in state s are independent of 0, then 0 will also hold in the next (resulting) state.
For example, we could use this rule to infer that, if move(A, 1) were the only event to occur
in some state s, the location of B would be the same in the resulting state as it was in s.

Unlike many other approaches to persistence [19,40 42,80,94,103], the foregoing law is
monotonic; that is, the law does not involve any nonmonotonic operators or depend on any
consistency arguments. Nor is it some fortuitous property of the world in which we live.
Rather, it is a direct consequence of our notions of event and independence. What makes

3 Independence can be defined as follows. Let tr(e, s, s') denote that (s, s') is an element of the transition
relation associated with event e. Then we have that p is independent of e in state s if and only if. for all
o such that 4) is consistent with both p and -'p, (3s' . tr(e, s,s') A holds(p A 0, s')) E (33' . tr(e. s. s') A
holds(-'pA , s')). This, of course, is not computable. Note also that an event transition relation may include
states that cannot occur (because of some domain constraint) in any world history.

47 Z

• . , . .-%. %. % ". .

4V

planning useful for survival is the fact that we can structure the world in a way that keeps
most properties and events independent of one another, thus allowing us to reason about
the future without complete knowledge of all the events that could possibly be occurring.

At first glance, however, it appears as though we would encounter considerable diffi-
culty in specifying independence, simply on the grounds that it should be ascertainable for
each possible fluent/event pair. Indeed, this is hardly surprising, as the foregoing law of
persistence is little different in this respect from the original formalisms that gave rise to
the frame problem [78).

There are two ways we could deal with this difficulty. One is to remain monotonic and
rely on general axioms regarding independence to reduce combinatorial complexity. The
other is to apply some nonmonotonic rule or minimization criterion that would allow inde-
pendence to be specified more succinctly. I discuss the nonmonotonic approach elsewhere
[33]; herein, I want to examine briefly the monotonic specification of independence, so as to
show that such an approach is - in some cases - a practical alternative.

One way in which the combinatorics can be substantially reduced is by explicitly speci-
fying all the events that could possibly affect each fluent.' For example, for a given fluent
p, we might have axioms such as the following:

Vs,e . -,indep(p,e,s) D ((e = eI) V (e = e2) V...)

or, in its contrapositive form

Vs, e . -,((e = el) V (e = e2) V ...) D indep(p,e,s)

As one would expect that, out of all possible events, there will be relatively few that affect
a given fluent, such specifications can reduce considerably the combinatorics of providing
separate independence axioms for each fluent/event pair. A minor complication is that,
because we allow composite events (such as eijje 2, and that combined with, say, e3 , and so
forth), the axioms for independence cannot be quite so simple as given above. However.
this presents no serious difficulty.

A more substantial problem, however, is that this approach requires one to know the
effects of all actions and events that could possibly occur. That is, such axioms do not allow
for the possibility that unspecified events could affect the fluents of interest. This approach
would therefore seem too strong for many real-world applications, though may be useful in
less general contexts.

There Pre other ways to specify independence, however, that manage to avoid the combi-
natorial problem, yet do so without banishing unspecified events from the scene and without
introducing nonmonotonicity. In particular, it may be possible to provide axioms describing
the extent to which various actions and events exert their influence. For example, it may
be that events outside a particular region R cannot affect properties inside that region:

Vs, e, 0 . internalf(0, R, s) A external(e, R, s) D indep(O, e, s)

"This is essentially what Lansky does when she defines state predicates in terms of events [61].

48

_V

In this way, a single axiom can specify independence for an entire class of fluent/event
pairs. In large real-world domains this will invariably lead to a substantial reduction in the
combinatorics of the problem. In small blocks worlds, on the other hand, it will not - but
writing down all the independence axioms in such a case is not much of a problem either.

D Interference

If we are interested in constructing plans of action, one of the more important considerations
is whether or not the actions constituting such plans are indeed performable. In single-agent
planning, this question is quite easily handled by means of explicitly specifying preconditions
that guarantee action performability. As we shall see, however, it is much more complex in
multiagent domains.

The source of the problem in multiagent planning is that it is not possible to state

simple preconditions for each individual action, the satisfaction of which would ensure its
performability. In multiagent domains, whether or not an action can be performed will
depend not only on the fulfillment of such preconditions, but also on which events or actions
may (or are required to) occur simultaneously with the given action; it is, after all, of little
use to form a plan that calls for the simultaneous or concurrent performance of actions that
are inherently precluded from coexisting.

This problem is far more crucial than it may first appear. In particular, we are not

concerned merely with issues of deadlock avoidance. In planning and other forms of practical
reasoning, the failure of an action does not necessarily mean that the agent or device
performing the action will thereafter be unable to proceed. Rather, such failure is usually
taken to mean that the desired or intended effects of the action have not been achieved.
Thus, though true deadlock may occur quite rarely, actions often fail to produce their
intended effects because of interference with other, often unanticipated events.

Moreover, much of human planning revolves around the coordination of)lans of action.
Some of this is concerned with synchronizing the activities of agent8 so that tasks involving

more that one agent can be carried out successfully. Such synchronization can be accom-
plished by specifying explicitly what temporal relations should hold among the activities of
the various agents [61,1111. The more difficult problem is to identify interactions among po-
tentially conflicting actions. Indeed, the recognition of possible plan conflicts is considered
by some philosophers to be at the heart of rational behavior [8].

One way to specify such constraints on actions and events is to provide explicit axioms
stating which events should occur simultaneously and which should not. For example, we
could have the axiom

Vs. -"(occurs(el, s) A occurs(e2 , s))

to mean that event el could not occur simultaneously with event e2 . This is exactly the
approach employed by Lansky [61] and Pelavin [91]. However, while it seems that the
synchronization of actions for cooperative tasks is most naturally expressed directly (that
is, by explicitly specifying the required temporal relations between specific actions). it seems

49

4'q7_ " A t A - ...1

unreasonable to require that all possible action conflicts also be so specified. For most real-
world domains, it is more natural to specify just the effects of actions and to deduce, as the
need arises, whether or not any two actions will interfere with each another. Furthermore.,
for domains of any complexity, there are potentially a very large number of actions and
events that could interfere with one another. In such cases, the explicit specification of
interference would entail severe combinatorial difficulties, although appropriate structuring
of the problem domain [61] could substantially reduce the combinatorics.

It is desirable, therefore, to be able to determine freedom from conflict for any specified
events, given simply a description of the effects of these events upon the world. To do this,
we need to prove that the intersection of the transition relations corresponding to the events
of interest is nonempty.

At first glance, it appears as if axioms about the effects of events are all we really need
for determining the possibility or not of event simultaneity. For example, let us assume we
have the following axioms describing events el and e2 :

Vw, s . holds(p, s) A occurs(el, s) D holds(ql, succ(s, w))

Vw, s . holds(p, s) A occurs(e2 , s) D holds(q2 , succ(s, w))

From this we can infer that

Vw,s . holds(p,s) A occurs(eille 2, s) D holds(qi A q2, succ(s, w))

Nevertheless, it would be unwise to take these axioms as the basis of a plan to achieve
q, A q2. The reason is that, given these axioms alone (or any others of the same form),
it is simply not possible to prove that events el and e2 can occur simultaneously. Nor is
it possible to use consistency arguments to justify the assertion that these events can so
occur; indeed, whether or not these events can take place simultaneously depends on how
they affect other world properties. For example, simultaneity would be impossible if el, say,
always resulted in r being true while e2 always resulted in r being false. (Of course, given
sufficient axioms about the effects of el and e 2 , we could, in this case, prove that they could
not occur together.)

Even if we are given necessary and sufficient conditions for the occurrence of events [3],
we are still not out of the woods. For example, consider that events el and e2 satisfy the
following axioms:

Vw, s . occurs(el, s) E holds(p, s) A holds(ql, succ(s, w))

Vw; s . occurs(e2 , s) = holds(p,s) A holds(q2, succ(s, w))

That is, a necessary and sufficient condition for el having occurred is that p holds at
its inception and q, holds at its completion; for e2 , q2 must hold at its completion. But,
even in this case, the best we can do is to try to prove that it is consistent for these events
to occur simultaneously. This is clearly unsatisfactory from a computational standpoint.
Furthermore, such reasoning is essentially nonmonotonic; the addition of further axioms

50

CVLNA, ,'. .IS "! -A.

may render previously consistent formulas inconsistent and any previous conclusions about
possible event simultaneity may have to be withdrawn.

Another alternative is to determine interference by checking mutual independence for
every fluent in the domain [32]. The major problem with such an approach is that this
determination has to be made for every possible fluent, including unspecified one.s. For
example, despite the fact that two events may be mutually independent with respect to
every specified fluent in the domain, there may exist some unspecified fluent for which they
are not mutually independent. We are thus required to assume that the explicitly denotedi!
fluents are the only ones relevant to the determination of interference.

Just as we wanted to avoid introducing any nonmonotonic operator or consistency cri-
terion into our law of persistence, here also we want to avoid any form of nonmonotonicity.
The solution we propose is based on being able to specify conditions under which we can
guarantee performability of a given action or event. Such a condition will be called a correct-
ness condition and, for a given event e, condition p, and state s, will be denoted cc(p.e, s).
The intended meaning of this statement is that any event that does not interfere with (af-
fect) condition p will not interfere with (prevent) the occurrence of event e.5 In addition, of
course, we would need appropriate axioms defining the preconditions for the performance
of e, but this is easily handled in the standard manner.

We now introduce the notion of freedom from interference. We shall say that events .

and e2 are interference-free in a state s if the following condition holds:

30, 0 .cc(0,ei,s) A cc(O,e 2 ,s) A indep(o,e2,s) A indep(V,,el,s)

TY.is condition will hold if, in state s, events el and e2 have no direct effect on the same %

properties of the domain. For example, consider the events move(A. 1) and move(B, 1) %1

described earlier. We have the following: 6

Vs, x, y, X . holds(x $ X, s) D indep(loc(x, y), move(X, 1), s)

Vs, X . cc(loc(X, 1), move(X, 1), s)

If A and B are assumed to denote different objects, it is easy to see that rnove(A. 1) and
move(B, 1) are interference-free. Note that we have assumed that both A and B can occupy
the same location at the same time. If this were not the case, the correctness conditions for
move(A, 1) and move(B, 1) would have to be altered to include this additional constraint.
The events would then not be interference-free.

It immediately follows that two events will be able to occur simultaneously in a state S
if

1. The preconditions of each event are satisfied in s, and

$Correctness conditions can be defined as follows. Let tr(e, s, s') denote that (s, s') is an element of the
transition relation associated with event e. Then we have that p is a correctness condition for an event c if
and only if, for all 0 such that both 0 and -0 are consistent with p, (3s' . tr(e, s. 3')) A holds(p A 0. S'))
(3s' .tr(e, a, s') A holds(p A -0, s')). As with the definition of independence, this is not computable.

6 We assume x and y are rigid designators; see reference (731 for a discussion of this issue.

51

, , ,-,-%*.% . ,--. .:.. .,... .. .-..- .. : -.. .'..
- - ' :- *--- :£ ~ d' u ,' n' ' , '= : " ,: - " ,- , *.*.** " ' * .. . - " , , i "": - ,

"
.

2. The events are interference-free in s.

It should be noted that, if we wish to show that two events can proceed concurrently
(which not only includes simultaneity but also allows either event to precede the other).
we also need to prove that the preconditions of each event are independent of the other
event. This can be done in the same way as for the correctness conditions. One might. in
such circumstances, reserve the term "interference-free" for events that affect neither each
other's correctness conditions nor preconditions [29]. Actions move(A, 1) and move(B, 1)
are also interference-free in this stronger sense, as neither action affects the preconditions
of the other.

In case two events do affect the same fluents (and thus do not satisfy the condition of
interference freedom given above), it might yet be that the fluents are affected in the same
way. If this is so, we say that the events are compatible. Compatible events can occur
simultaneously, and in this sense are also interference-free.

E Causality

One problem that we have not properly addressed is the apparent complexity of the axioms
of independence and correctness. For example, while it might seem reasonable to state that
the location of block B is independent of the movement of block A, as everyone knows. this
is simply untrue in most interesting worlds. Whether or not the location of B is independent
of the movement of A will depend on a whole host of conditions, such as whether B is in
front of A, on top of A, on top of A but tied to a door, and so on. Indeed, it is often this
apparent endless complexity rather than the combinatorial factors that many people have
in mind when they refer to the frame problem.

One way to solve this problem is by introducing a notion of causality. We allow two
kinds of causation, one in which an event causes the simui*aneous occurrence of another
event, and the other in which an event causes the occurrence of a consecutive event. We
denote these two causal relations by causes,(O,el,e2) and causes,(O, ei,e 2), respectively,
where 0 is the condition under which event el causes event e2 . These two kinds of causality
are sufficient to describe the behavior of any procedure, process, or device that is based on
discrete (rather than continuous) events.

The axioms expressing the effects of causation are

Vw, s,4,el,e2 . causes,(O,el,e2) A holds(4,s) A occurs(el,s) D occurs(e2 ,s)

VW, S1 0, el, e2 • causes,(O, ei, e2) A holds(o, s) A occurs(el, s) D occurs(e2 ,s?1cc(s, It"))

For example, we might have a causal law to express the fact that, whenever a block x is
moved, any block on top of x and not somehow restrained (e.g., by a string tied to a door)
will also move. We could write this as

Vx, y,l .causes,((on(y,z) A - restrained(y)),move(x,l),(nove(y,l))

52

-0. -. ,-, -", .-.- •,-.-

If this axiom holds, the movement of x will cause the simultaneous movement of y
whenever y is on top of x and is not restrained.

We use the notion of causality in a purely technical sense and, while it has many simi-
larities to commonsense usage, we are not proposing it as a fully-fledged theory of causality.
Essentially, we view causation as a relation between atomic events that is conditional on
the state of the world. We also relate causation to the temporal ordering of events, and as-
sume that an event cannot cause another event that precedes it. However, as stated above.
we do allow an event to cause another that occurs simultaneously. This differs from most
other formal models of causality [61,80,103], although Allen [3] also allows simultaneous
causation.

We can also use causality to maintain invariants over world states and to simplify the
specification of actions and events. Consider, for example, a seesaw, with ends A and B and -e
fulcrum F (Figure 1). Assume that A, F, and B are initially at location 0, and consider
an event moveF that moves F to location 1. Because of the squareness of the fulcrum and *-

the constraint that A, F, and B must always remain collinear, moveF also results in the
movement of A and B to location 1.

We could model moveF by a somewhat complex event that, in and of itself, would affect
not only the location of F, but also the locations of A and B. Using this model, the locations
of F, A, and B would not be independent of moveF. However, an alternative view would
be to consider that the only property affected by moveF is the location of the fulcrum F,
and to let moveF cause the simultaneous movement of A and B.

For example, we might have the following causal laws:

causes,(true, moveF, move(A, 1))

causes,(true, moveF, move(B, 1))

The intended meaning of these causal laws is that, if we perform the event moveF, both
move(A, i) and move(B, 1) are caused to occur simultaneously with moveF.

With this axiomatization, the locations of A and B will be independent of mov(-F.
Of course, because moveF always causes the movement of A and B, their locations will

always be indirectly affected by the movement of F; however, from a technical standpoint,
we consider the locations of A and B independent of moveF itself (though not of the
composite event that consists of the simultaneous movements of F, A, and B). The axioms
of independence (and, similarly, correctness) can thus be considerably simplified, but at the
cost of introducing more complex causal laws. The advantage of doing things this way is
that the complexity is thereby shifted to reasoning about relationships among events, but
away from reasoning about the relationships between events and fluents.

There are a number of things to be observed about this approach. First, provided that .
we add a domain constraint requiring that A. F, and B always remain collinear, we could
simplify the above causal laws so that, for example, we require only that move(A. 1) be
caused by moveF. Using the collinearity constraint, together with the law of persistence.
we can then infer that there must exist yet another event that occurs in state S and that
brings about the simultaneous movement of B.

53

In many cases, therefore, we do not need to include causal laws to maintain invariant
world conditions; we can instead make use of the constraints on world state to infer the
existence of the appropriate events. However, if we do adopt this approach, we shall have
to find some way of inferring (either monotonically or nonmonotonically) which of all the
potentially appropriate events is the intended one (for example, did the event move B alone.
or did it have other effects on the world as well?).

Second, causal laws can be quite complex, and may depend on whether or not other
events take place as well as on conditions that hold in the world. As a consequence, the
application of causal laws need not yield a unique set of caused events. For example, one
causal law could require that an event el occur if e2 does not, whereas another could require
that e2 occur as long as el does not. Given only this knowledge of the world, the most we
could infer would be that just one of the events has occurred - but which one would be
unknown.

Third, for planning possible future courses of action, the extent of causality must some-
how be limited. Unless we have either first-order axioms or some nonmonotonic rule to
limit causation, any given event could conceivably cause the occurrence of any other event.
Clearly, with the possibility of so many events occurring, any useful planning about the
future becomes impossible. This is not a difficult problem, but some care must be taken in
addressing it [33].

It is interesting to note that the "deductive operators" used in SIPE [116] are very much
like the causal laws described herein. Furthermore, SIPE limits the extent of causation by
use of an implicit closed-world assumption so that, if causation between any two events
cannot be proved, it is assumed that no such relation exists. This yields precisely those
events that are causally necessary.

Finally, some predicates are better considered as defined, which avoids overpopulating
the world with causal laws. For example, the distance between two objects may be con-
sidered a defined predicate. Instead of introducing various causal laws stating how this
relation is altered by various move events, we can simply work with the basic entities of the
problem domain and infer the value of the predicate from its definiens when needed.

F Events as Behaviors

So far, we have identified actions and events with the sets of all their possible behaviors.
However. at this point we encounter a serious deficiency in this approach, as well as all others
that model actions and events in this way [3,19,80,91,102]. Let us return to the example of
the seesaw described in the previous section. Again assume that A, F, and B are initially at
location 0, and consider two actions, moverp and moveF, both of which move F to location
1 (see Figure 1). We require that both events also allow all possible movements of A and B,
depending on what other events are occurring at the same time (such as someone lifting B).
Of course, the objects must always remain collinear. However, moveF and move', differ in
that, when performed in isolation mot eF results in the simultaneous movement of 4 and
B to location 1. whereas move' leaves the location of A unchanged while moving B to
location 2.

545

..- ...?. .. - -..- . .2 .. - . . " - . - . .-- . . -. . - -

Because both moveF and move' exhibit exactly the same class of possible behaviors,
the transition relations associated with each of these events will be identical. From a purely
behavioral point of view, this is how things should be. To an external observer, it would
appear that moveF, say, sometimes changed the location of A and not B (when some
simultaneous event occurred that raised A to location 2), sometimes changed the location
of B and not A (when some simultaneous event raised B), and sometimes changed the a
locations of both A and B. (Of course, moveF would always change the location of F). As
there is no observation that could allow the observer to detect whether or not another event
was occurring simultaneously, there is no way moveF could be distinguished from mowe' F

or any other event that had the same transition relation.

On the other hand, it is very convenient to be able to make such distinctions; humans
seem to have no trouble reasoning about events of this kind, and it would be unwise to
exclude them from our theory. For example, moveF and move'. may correspond to two dif-
ferent ways of moving F. On the surface, these events would appear to allow the same class
of behaviors but, because of unobserved differences in the ways that they are performed,
could exhibit different behaviors in specific situations. In other cases, while an event like
moveF might be appropriate to seesaws, an event isomorphic to move' might be necessary
for describing the movement of objects in other contexts. For example, consider the case in
which, instead of being components of a seesaw, A is a source of light and B is F's shadow.

Thus, if we wish to be able to distinguish events such as moveF and move' . we have
to allow events with identical transition relations to have differing effects on the world,
depending on what other events are, or are not, occurring at the same time. Unfortunately,
our current model of events simply leaves us no way to represent this. We cannot restrict the
transition relation of moveF, say, so that it will always yield the state in which A, F, and B
are all at location 1, because that would prevent A or B from being moved simultaneously
to other locations. Similarly, we cannot restrict the transition relation of move'F to allow
only the movement of B. Nor can we use any general default rule or minimality criteria to
determine the intended effects of an event when performed in any specific context (because
that would yield identical models for both moveF and move'F). Indeed, in the situation in
which moveF is performed in isolation, note that we do not minimize the changes in world
relations or maximize their persistence: both A and B change location along with F.

We therefore consider events to be objects of the domain that have an associated tran-
sition relation, but do not require that events with the same transition relation be deemed
equivalent. Events having the same transition relation may differ in other properties: in
particular, they may play different causal roles in a theory of the world.'

For example, in the case of the seesaw, we might have the following axiom for moveF:

causes,(p, moveF, move(A, 1))

where p _ A(s)(Ve . occurs(e, s) D int-free(e, move(A, 1), s)) .

7 In a previous paper [32] 1 identified events with transition relations and let actions alone assume different
causal roles independently of their associated transition relation. Considering the vast literature that already
exists on events and actions, and which, if anything, makes a somewhat different distinction, I now b.lieve
this to have been a bad idea.

55..

N
f.*•

%-.. .'.....,,. .. , .. :..J' . .f t. .. ' : * S : ,,.... . ''..-. . "..'.',2 ft . , '.'- . 5 t * - , " " ".". " . " %

The intended meaning of this causal law is that the movement of F will cause the movement
of A to location 1, provided no event occurs that interferes with the movement of A. If
desired, one could use a similar causal law to describe the movement of B.

On the other hand, move' would cause the movement of B to location 2 when performed
in isolation:

causes,(q, move'F, move(B, 2))

where q =- A(s)(Ve . occurs(e, s) D int-free(e, move(B, 2), s))

It is important to note that this view of events (and any view that, in one way or another,
associates an event with the set of all its possible behaviors [3,19,80,91,102]) requires that
the event transition relation include all possible transitions under all possible situations,
including the simultaneous occurrence of other events. For example, if we wish to allow for
two pushing events opposed to one another to exert sufficient frictional force on a block to
enable it to be lifted, this composite event must be one of the permissible transitions in each
of the individual push events. Thus, two events cannot be combined to yield, synergistically,
an event that is not part of the actions themselves. It follows that, in the specification of
an event, we can only state what is true of all possible occurrences of the event. In the case
of the push event, it would be a mistake to write an axiom stating that the effect of a push
event on a block is to move the block. While this may be true if there is but a single event
affecting the block in question, it is clearly false when two or more such events are acting
upon the block simultaneously.

What is true of all push events (and hence can be stated as an axiom) is that they
exert a force on the object being pushed. Other axioms could then be used to specify under
what conditions opposing forces generate sufficient frictional force to lift objects, while a
third group of axioms could describe how the resultant forces on an object cause it to move.
Depending on the desired level of description, this axiomatization could be either simplified
or elaborated.

G Processes

It is often convenient to be able to reason about groups of causally interrelated events as
single entitities. For example, we might want to amalgamate the actions and events that
constitute the internal workings of a robot, or those that pertain to each component in
a complex physical system. Such groupings of events, together with the causal laws that
relate them to one another, will be called processes.

We assume that we have a set of processes and can classify various events and fluents as
being either internal or external with respect to these processes. Let internal1 (k, P, s) and
external(0, P, s) denote these relationships as they hold between a fluent 0 and process P
in state s, and let internale(e, P, s) and externale(e, P, s) denote these relationships between
an event e and process P in state s.

We place a number of constraints on the internal and external fluents and events of a
process. First, we require that, for both fluents and events, those classified as internal be

56

~ ~ ~ A~ .22.~-

mutually exclusive of those classified as external. Second, we require that, in all situations,
each internal event have a correctness condition that is dependent only on internal fluents.
This property can be expressed as follows:

Ve, s, P . internale(e, P, s) D 30 . internalf(4, P, s) A cc(o, e, s)

We impose a similar constraint on the preconditions of internal events. Next, we require
that internal fluents be independent of all events except internal ones:

Ve, s, €, P . internalf(¢, P, s) A -iinternale(e, P, s) D indep(¢, e, s)

External events and fluents are required to obey similar constraints. It is then not difficult
to prove that, if the above axioms are satisfied, the internal events and external events of a
given process are interference-free.

Finally, we require that there be no direct causal relationship between internal and
external events. Thus, the only way the internal events of a given process can influence the
external events of the process (or vice versa) is through indirect causation by an event that
belongs to neither category. Within concurrency theory, these intermediary events (more
accurately, event types) are often called ports. Processes thus impose causal boundaries
and independence properties on a problem domain, and can thereby substantially reduce
cominatorial complexity. Lansky's notion of a group [61] is quite similar to our notion of
process.

The ease with which processes can be identified will depend strongly on the problem do-
main. In standard programming systems (at least those that are well structured), processes
can be used to represent scope rules and are fairly straightforward to specify. On NASA's
proposed space station, most of the properties of one subsystem (such as the attitude con-
trol system) will be independent of the majority of actions performed by other subsystems
(such as the environmental and life support system), and thus these subsystems naturally
correspond to processes as defined here. Lansky [61] gives other examples in which processes
are readily specified.

In other situations, the specification of processes might be more complicated. For ex-
ample, we might know that interference at a distance can occur only as a result of elec-
tromagnetic or gravitational phenomena, and so utilize this knowledge to impose causal
boundaries whenever electromagnetic emissions are shielded and gravitational forces are
negligible. Moreover, in many real-world situations, dependencies will vary as the spheres
of influence and the potential for interaction change over time. For example, consider how
many actions in real life are taken solely for the purpose of limiting or enhancing interference
with other systems (such as closing a door for privacy, camouflaging military equipment, or
making a phone call).

If we are to exploit the notion of process effectively, it is important to define various
composition operators and to show how properties of the behaviors of the composite pro-
cesses can be determined from the behaviors of the individual processes. For example, we
should be able to write down descriptions of the behaviors of individual agents, and from
these descriptions deduce properties of groups of agents acting together (concurrently). We
should not have to consider the internal behaviors of each of these agents to determine how

57

the group as a whole behaves. In contrast, all the so-called hierarchical planning systems
(e.g., NOAH [100] and SIPE [116]) analyze interaction down to the atomic level (as was
noticed early by Rosenschein [99]).

The existing literature on concurrency theory [47,81] provides a number of useful com-
position operators. Some examples are given below. They can all be defined in terms of
the causal relations introduced earlier, although we need to introduce a special "no-op" or
"wait" event to prevent forcing the processes to operate in lockstep with one another.

Prefixing (:)

The process e : P is one that can begin by performing the event (strictly speaking, event
type) e, after which it behaves exactly like P.

Sequencing (;)

The process P ; Q behaves first like P and, if that concludes successfully, behaves next
like Q.

Ambiguity ()

The process P + Q can behave like either P or Q. For example, if

R = (b : P) + (c: Q)

then R can either perform b and evolve into P or perform c and evolve into Q.

Parallelism (&)

The process P & Q is one in which both P and Q run concurrently. Events that are
designated as synchronous must occur simultaneously, whereas other events can choose to
occur simultaneously with one another or be arbitrarily interleaved.

We must, of course, provide various axioms about these operators so that they will be
useful. For example, it is not difficult to show that any [temporal] property that holds of
the behaviors of a process P (or Q) will also hold for the composite process P & Q.

Such axioms may not appear to be very useful, as the properties that hold of each process
will, in general, depend on what other events could occur in the environment. However, to

the extent that the properties of a process's behaviors are specified in terms of its internal
events and fluents, they will be independent of the context in which the process is embedded.

For example, consider the two very simple processes P and Q given below:

P = a : b: P, and

Q =c:d:Q .

Strictly speaking, we have to provide a fixed-point operator to define these processes
[47], but the intended meaning should be clear. Now, if the event types a and b are mutually
exclusive and are internal with respect to process P, all behaviors of P will be such that
the number of events of type a, denoted #a, and the number of events of type b, #b, obey
the constraint: #a - 1 < #b < #a. This would not be the case if a and b were not
internal events of process P, as any other process could then choose to perform an arbitrary
number of events of type a or b concurrently with process P.

58

-.

Now let's assume that c and d are internal events of process Q, and thus obey a law
similar to that given for P. Furthermore, let us assume that events of type b and d are
always constrained to be simultaneous with some interface event e, and vice versa. Using
the fact that the behaviors of the composite process P & Q will satisfy the same constraints
as the component processes, it is not difficult to prove that #a - 1 < #c < #a + 1.

* Despite the triviality of the example, the important point is that, in proving the above
result, we have not had to examine the internal workings of either process P or Q. For
example, had the internal structure of these processes been entirely different, this result
would have remained valid (provided, of course, that the processes had still imposed the
same constraints on the number of occurrences of events a, b, c, and d). Furthermore,
in determining the properties of the individual behaviors of P and Q we have not had to
consider the external environment in which they are embedded; the relationship between the
number or occurrences of events a and b in process P is independent of external happenings,
and similarly for events c and d in process Q.

There are a number of complexities in the specification of processes that require some
care. For example, a process may fail at any time (because some precondition has not been
or cannot be met, or some correctness condition has been violated, etc.). Thus, the behaviors
generated by a process will include both failed and successful behaviors, where each failed
behavior is a prefix of some successful behavior. Indeed, the notion of a process generating
both successful and failed behaviors is essential to planning in real-world domains - we
frequently select a plan of action according to how it can fail rather than how it succeeds.
Amy Lansky and I have discussed this question in more detail elsewhere [35].

Nondeterministic processes present another problem that has to be addressed with cau-
tion. Such processes can differ from one another despite the fact that they generate identical
behaviors (both successful and failed). The reason for this is that nondetermistic processes
can behave differently in different environments even though their sets of potential behav-
iors are identical. This issue is explored at length in the literature on concurrency and
various means of handling the problem have been developed [47,81].

In summary, the notion of process allows us to structure problem domains and thus
avoid considering how every event affects every other event or fluent. It can therefore
lead to a substantial reduction in the combinatorics of the problem. Furthermore, we can
describe complex domains in a compositional way - that is, we can specify properties of
individual processes independently of other processes, and then determine the behavior of
the combined processes from knowledge of the behaviors of the component processes.

H The Frame Problem

The frame problem, as Hayes [42] describes it, is concerned with providing, in a reasonably
natural and tractable way, appropriate "laws of motion." Our approach to this problem has
been to provide a proper model-theoretic account of actions and events, and to formulate
first-order axioms and rules that allow the effects of actions and events to be determined
monotonically. Furthermore, by introducing the notions of independence and correctness,

59

-- ,

we obviate the necessity of using nonmonotonic operators or consistency arguments to
obtain useful results regarding persistence and interference.

Of course, we are left with the problem of specifying independence and correctness. There
are essentially two problems here: (1) the apparent combinatorial difficulties in expressing
all the required independence and correctness axioms; and (2) the complexity to be expected -

of many, if not most, of these axioms in real-world applications.

The first of these problems is probably overstated in much of the literature on the frame
problem. Thus, just as in the axiomatization of any large or infinite domain, the number
of axioms required to specify independence (and correctness) can be substantially reduced
by the use of general axioms that allow specific instances of independence to be deduced as
needed. This can substantially reduce the combinatorial problem and has the advantage of
remaining within the bounds of first-order logic.

Where desired, some simple closed-world assumption or minimality criterion could ad-
ditionally be used to ease specification of the independence relation for the basic fluents of
the domain. This can be quite straightforward, although some care has to be taken with
the situation variable [33,40].

The second problem is handled by introducing causal laws that describe how actions
and events bring about (cause) others. Indeed, without such causal laws, the specification
of independence would become as problematic as is the specification of persistence in the
standard formalisms. Of course, the causal laws can themselves be complex (just as is the

physics of the real world), but the representation and specification of actions and events are
thereby kept simple.

Some researchers take a more general view of the frame problem, seeing it as the prob-
lem of reasoning about the effects of actions and events with incomplete information about
what other events or processes (causally related or otherwise) may also be occurring. Un-
fortunately, this problem is often confused with that of providing an adequate model of
events, with the result that there is usually no clear model-theoretic semantics for the
representation.

For example, one of the major problems in reasoning about actions and plans is to
determine which events can possibly occur at any given moment. Based on the relative
infrequency of "relevant" events (or that one would "know about" these if they occurred),
it has been common to use various default rules (94], nonmonotonic operators (19,801, or
minimal models [69,75,103] to constrain the set of possible event occurrences. However,
there are many cases in which this is unnecessary - where we can prove, on the basis of
general axioms about independence and correctness, that no events (or effects) of interest
could possibly occur. We may even have axioms that allow one to avoid considering whole
classes of events, such as when one knows that certain events are external with respect to a
given process. Thus, in many cases, there may be no need to use default rules or minimality
principles - reasoning about plans and actions does not have to be nonmonotonic.

When we do need to make assumptions about event occurrences, default rules and
circumscription can be very useful. For example, by minimizing the extensions of the
occurs and causes predicates, we can obtain a theory in which the only event occurrences

60

are those that are causally necessary [33]. This kind of reasoning seems to correspond closely, ,i
to much of commonsense planning. However, in making reasonable assumptions about aN 6

given domain, we do not have to limit ourselves to such default rules or minimality criteria. ..]
In some cases, it may be preferable to use, for example, domain-specific rules defining what "_
assumptions are appropriate or, alternatively, a more complicated information-theoretic ''",,
approach based on quantitative probabilities of event occurrences. L--

To take a familiar example [3], it seems reasonable, at first, to assume that my car is still :.:
where I left it this morning, unless I have information that is inconsistent with that assump- .
tion. However, this premise gets less and less reasonable as hours turn into days, weeks,..-.
months, years, and centuries - even if it is quite consistent to make such a premise. This puts..,

the problem where it should be - namely, in the area of making reasonable assumptions, " ?
not in the area of defining tike effects of actions [25,42,94], the persistency of facts [19,80], '"".

or causal laws [1031. "'

Of course, most of the axioms we might state about the real world are subject to .-
qualification [78]. Our aim has not been to solve this problem, although fl,,a notion of
causality helps to some extent. Furthermore, because our approach has a well-defined ..
semantics and can be formalized in first-order logic, we provide a sound base on top of
which can be built various meta-theories regarding the handling of qualifications and other :::'
kinds of assumptions. I address some of these issues elsewhere [33]. ...

• .

I Conclusions"--

We have constructed a model of actions and events suited to reasoning about domains thatcrso
involve multiple agents or dynamic environments. The proposed model provides for simul-
taneous actions, and a generalized situation calculus is used to describe the effects of actions

in multiagent settings. Notions of independence and correctness were introduced and it was
shown how they can be used to determine the persistence of facts over time and whether
or not actions can be performed concurrently. Both these notions I consider critical to rea-
so acing effecd outitatiagent domains. Furthermore, unlike most previous formalisms'S
in both single and multiagent domains, the proposed law of persistence is monotonic and
therefore has a well-defined model-theoretic semantics. -

We have also demonstrated how the concept of causality can be used to simplify the "
description of actions and to model arbitrarily complex machines and physical devices. It ?.was also shown how sets of causally interrelated actions can be grouped together in pro-week,

cesses and how this structuring of a problem domain can substantially reduce combinatorial ,

complexity. The notion of structuring the problem domain by using general axioms about

independence and causal influence appears to be essential for solving complex multiagent
problems. The only existing work I know of that incorporates such an idea is the planning
system being developed by Lansky [61].

Although we did not consider implementation issues directly, the concepts and laws
introduced by us were amdt providing a sound basis for practical planning and reasoning ha

61i

invole muliple gent or-ynmi enirnmnt.- Th proposed = model- provi • "d e fo si- o-4 . ..-- . , ..

systems. For example, one of the most efficient action representations so far employed in
Al planning systems - the STRIPS representation [25,69] - is essentially the special case in
which (1) the effects of an action can be represented by a conjunction of either positive or
negative literals, called the add list; (2) the action is independent of all properties except
those given in (or deducible from) the delete list of the action; (3) a single precondition
determines performabilty of the action; and (4) no actions ever occur simultaneously with
any other. The approach used by Pednault [90] can also be considered the special case in
which there are no simultaneous actions.

Furthermore, the work here indicates how the STRIPS representation could be extended
to the multiagent domain. For example, one possibility would be to stay with the single-
agent representation, adding to it the requirement that the correctness conditions of an
action be represented by the same conjunction of literals given in the add list of the action.
Causal laws could be introduced in the manner of the deductive operators of SIPE [1161,
thereby increasing the expressive power of the approach without introducing the problems
usually associated with extending the STRIPS assumption [94]. In this way, some of the
traditional planning systems may be able to be modified to handle multiagent domains. Al-
ternatively, the approach of Manna and Waldinger [73] could be applied to these domains
by employing the generalized situation calculus we introduced here. Finally, our approach
has shown how we can deduce constraints on the occurrence of actions and events from rel-
atively simple axioms about their effects and influence. These constraints can then be used
by event-based planners [28,61,111] to form synchronized plans involving the cooperation
of multiple agents in dynamically changing environments.

1.1 Acknowledgments

I wish especially to thank Amy Lansky and Ed Pednault, both of whom helped greatly
in clarifying many of the ideas presented in this paper. I am also indebted to Vladimir
Lifschitz for some very enlightening discussions, and to Richard Waldinger who criticized
an earlier draft of this paper.

0

62

-:

Chapter 5

EVENT-BASED PLANNING
FOR MULTIAGENT DOMAINS

This work was originally reported at the Workshop on Planning and Action in Timberline,
Oregon in July 1986. It was written by Amy Lansky.

A Introduction

The duality between events and states is a well-known phenomenon. In a state-based
representation, the world is viewed as a series of states or "snapshots" that are altered by
events. Events are modeled solely in terms of their state-changing function. Alternatively,
the dual, event-based approach represents the world in terms of a set of interrelated events.
In this context, the "state" of the world at any particular point in time is represented in
terms of the set of events that have occurred up to that moment (see Figure 5.1).

Most AI domain representations have relied on state-based models. In this paper we
explore the dual view and examine its impact on the representation of multiagent domains
- domains in which parallel activity is inherent and vital. As with most dualities, the choice
of one representation over another may not affect any essential capability for expression;
after all, one dual representation can usually be converted into the other. However, the mere
form of a representation may make certain kinds of properties more natural to express and
reason about. We believe that an event-based approach holds this advantage with respect
to many of the complicated properties of multiagent worlds.

The representation described in this paper is based on the GEM concurrency model
[63,64,65,66]. As advocated by philosophers such as Davidson [17] and as manifested in
several AI representations such as Allen's and Georgeff's [3,32], GEM reifies events and
explicitly represents their causal and temporal interrelationships. However, unlike previous
AI representations, events are the primary elements of our world model and state is defined
strictly in terms of past event activity. Thus, the work described in this paper explores the
use of events and event relationships in way that is more general than previous work on
knowledge representation and reasoning.

64

OV~ntA eventB
eventA: stateO -) state I

state2 eventB :state - state2

Stats-Iosm tv~tw

stateO -empty history

state I a history with eventA
state2 a history with

st ateO eventA -) event0

Figure 5.1: State/Event Duality

Another important aspect of the GEM representation is an explicit emphasis on location
of activity. Specific mechanisms are provided for structuring events into logical locations
of occurrence as well as for grouping those locations together in various ways. These event
structures help organize the way a domain is described - for instance, particular domain
constraints can be localized within a given context or subset of events. Structural contexts
can also be used to actually represent properties of the domain. For example, particular
event sets can be used to represent locations of forced sequential activity, scopes of poten-
tial causal effect, or the boundaries of localized forms of knowledge. In this way, domain
structure helps to attack aspects of the frame problem. Domain structure can also be uti-
lized as a heuristic in guiding computation; for example, it can serve as a guideline for the
decomposition of planning tasks.

65

V,/,

Within an event-based model, such as the one we are proposing, a notion of "state" is
most naturally defined in terms of past activity: the state of the world at any point in time
is merely a record of the events that have occurred and their interrelationships (once again,
see Figure 5.1). State descriptions can be used to characterize sets of states, just as in a
state-based model. These descriptions are typically formulas that describe patterns of past

40 activity - for example, "the state in which a red robot has registered a request for tool X
followed by a request for tool Y, but has not yet received either tool" or "the state in which
Jack and Jill have just simultaneously begun running down the hill." These "behavioral"
descriptions of state are formulas that explicitly describe temporal and causal relationships
between events. In GEM, behavioral state descriptions (as well as all domain constraints)
are stated as first-order temporal-logic formulas. Because these formulas are cast directly
in terms of events and event relationships, a wide range of behavior-related properties can
be described succinctly. Indeed, descriptions of states in which simultaneous activity has
occurred are impossible to formulate in many state-based representations. As we will show,
more conventional state descriptions based on state predicates can also be utilized in our
event-based framework (see Section F).

The primary aim of this paper is to convey the expressive power behind a world model
based on structured, interrelated events. We begin in Section B by motivating our under-
lying approach and relating it to other work. Section C provides a more formal description
of the GEM world model and presents a semantics for our domain descriptions. The power
behind this representation is then more fully illustrated in Section D through construc-
tion of a complex domain description. Finally, Sections E and F focus on the modeling of
nonatomic events, on building state descriptions, and on the frame problem. In Section G
we conclude with a brief discussion of our current work on building a planner based on this
event-oriented framework.

B Motivation and Background

B.1 A Scenario

One of the primary goals behind any representational mechanism is to capture the properties
of a domain in a useful and coherent way. Consider the following scenario. Three sets of
friends decide to meet for dinner at an elegant restaurant. Each person must find his or
her own mode of transport to the restaurant (personal car or taxi) and the first person
from each party to arrive must book a reservation for his or her group. The maitre d' at
the restaurant, Felix, happens to be a somewhat mercenary fellow who gives preference to
parties that bribe him. In fact, everyone knows that a $50 bribe will guarantee eventual
seating. However, he does have some scruples; he will seat a party only if a table of the
correct size is available and if the entire party has arrived (members of a party must be
seated simultaneously). All other things being equal, he will then seat parties on a first-
come-first-served basis. After being seated, guests may then choose, order, and eat their
meals.

This scenario, though somewhat complex, is typical of situations we confront in our day-
to-day lives. To describe it requires representation of several interlocking synchronization

66

". C . : . ; ". . " . . ."-"."-" :" . ."."-" :"-"."-", z """-. . " . ". """"".2 ', , - "" ' ' '- " " "-"

constraints (all of Felix's seating rules) as well as multiple ways of achieving goals (traveling
to the restaurant by car or taxi). It also manifests some naturally emerging forms of
structure: individuals are grouped into parties; certain locations of activity may be viewed as
resources at which only limited forms of activity may occur (the tables at the restaurant, the
attention of Felix); knowledge is partitioned (some of Felix's actions and habits are known
by all, whereas others may not be). These kinds of properties are found in many domains,
including factory management and scheduling, robotics, and organizational coordination.

When planning for a domain such as this, it is clear that some activities are loosely
coupled and can be planned separately (each person's plan for getting to the restaurant),
while others must be tightly coordinated (the seating of the three parties). In addition,
the expansion of some nonatomic actions will preserve a sense of locality and maintain
constraints that may have been solved at a higher level of abstraction (for example, each
person's menu selection plan). In other cases, however, nonatomic-event expansion will
result in activity that spans across locations accessible to others, and may thus require
rechecking after expansion (possible contention for the use of a limited number of taxis).

In Section D we shall illustrate our GEM-based representational approach by building a
specification of this scenario. In Section G we outline a planner currently under construction
that is based on GEM and that explicitly uses domain structure to guide the planning
process. First, however, we take a brief look at other common forms of domain specification
and the ways in which they might tackle the restaurant problem.

B.2 Other Approaches

Most traditional AI domain representations model the world as a sequence of states, and
actions or events as relations between sets of states [25,78,891.1 States descriptions are
typically constructed in terms of a set of state predicates, and actions are defined in terms
of preconditions and postconditions on state. This is the basic descriptive framework un-
derlying classical planning systems such as STRIPS [25], NOAH [100], and other planners
[112,114,1161. Some of these representations require that all events be totally ordered in
time r25,78]. In others, events are ostensibly partially ordered, but it is still assumed that
potentially interacting events occur in some total order that conforms to the partial order
[100]. For instance, this premise underlies use of the STRIPS assumption [25]. While the
STRIPS assumption can be used to determine the effect of individual events on world state,
it cannot be used to determine the combined effect of simultaneous events. Since parallel,
multiagent domains may sometimes even require that events occur at the same time (for
example, two robots picking a heavy block up together), this is a definite limitation. 2

Another disadvantage of traditional state-based frameworks is that they spread the
representation of some kinds of properties across several action descriptions. For example,

'Although they are often viewed as distinct, we shall use the terms "action" and "event" interchangeably.
2Recent work by Georgeff [32] has made progress in extending the situation-calculus framework to accom-

modate simultaneous events. A model-based approach is used, along with a semantic (rather than syntactic)
frame rule. However, properties that involve particular relationships between events (such as simultaneity)
must still be described in Georgeff's framework by using what is essentially event-based description. Thus,
although his model is state based, explicit relationships between events are used.

67

-J

bl.j .% .. , w. . .o- - -4 .-........... .-...- •"......

to encode the restaurant scenario's seating rules, several state predicates would have to be
maintained to encode the "synchronization state" of the reservation desk: who is waiting, in
what order they arrived, who gave the biggest bribe, how large the parties are, what tables
are available, etc. The preconditions and postconditions of reservation and seating-related
actions would involve complex manipulation of and interactions among these predicates.
Each of the seating constraints is essentially spread out among the descriptions of the
actions that are involved. Changes in the constraints may therefore entail fairly complex
and nonobvious changes in action descriptions. Clearly, it would be simpler if each of
Felix's rules were encoded as a separate, succinct constraint on the relationship among
domain actions.

More recent approaches to domain representation have been based on state intervals.
Events (actions) and/or predicates are modeled as state sequences occurring over an inter-
val of time, and domain properties are described in terms of interval-ordering constraints
[3,12,58,80,105]. This form of representation has the benefit of allowing the state of the
world during an event to be modeled explicitly and reasoned about. Event intervals can
be temporally related in all possible ways (for example, they can be interleaved or simul-
taneous). Most interval-based models also explicitly utilize relationships between events
(although sometimes only relationships between types or classes of events are allowed).
However, events themselves are not considered the primary objects of the world model.

Unfortunately, many of these interval-based approaches do not capture the semantics of
concurrent activity in a clear manner. For example, merely equating an event type with a
set of state intervals (typically, the intervals which represent successful event occurrences)
gives no clue as to how events are achieved or composed - e.g., what can or cannot be done
by an agent.3 This hampers reasoning about interactions and relationships between events,
as well as about how events may fail. Georgeff's recent paper elaborates this point [32]. '

V'.

3 However, Allen and Koomen [5] do utilize a simple form of event decomposition similar to NOAH
operators.

68

.0.-

'WA

2-"",\- "" '-'-""°" " "L ,','' '%'..Lu''-'-2 -°-'-2- ,
," -': " "- "','" "" "- "- - .,,' :'".- ," •" "'.'".' ' -" ."

" "
- -""-''°° "-

I - & 3. -

Some interval-based models also do not adequately capture existing or potential rela-
tionships between event instances. It is useful to be able to reason about specific causal
event-pairs, or the particular events composing a nonatomic event, not just causal and com-
posite relationships between classes of events. For example, in the restaurant scenario, it is
important to know precisely which reservation events correspond to which seating events.
Otherwise, Felix's seating rules could not be enforced. In addition, most interval-based rep-
resentations employ a notion of causality that implies eventuality - i.e., if a class of events
A has a causal relationship with a class of events B, then, if an event of type A occurs, an
event of type B must too. It is therefore difficult to talk about situations in which an event
has occurred but has not yet caused (and perhaps never will cause) its corresponding effect.
For example, one might view a party's entering a restaurant and making a reservation as
causing the party to be subsequently seated. However, such a seating need not necessarily
materialize.

4

Finally, none of these domain representations utilize event location (i.e. structural rela-
tionships between events) in any complex way.' These kinds of relationships are important
if we want to capture those aspects of a domain that are truly affected by locality - for
example, forced sequentiality within certain regions, or boundaries of causal effect.

As we shall illustrate, an ontology based on structured, interrelated events has a dis-
tinctly different flavor from the interval-based approaches, although it shares with them
many of the advantages over more traditional representations. Information about event
relationships is captured explicitly. We can easily talk about particular event instances and
their various temporal, causal, and simultaneity interrelationships, as well as how particular
events constitute a specific nonatomic event. Event intervals and interval relationships can
also be utilized. Complex structural relationships among events (i.e. various kind of event
locations and groupings of locations) are also represented. The temporal logic underlying
our model has a well-understood semantics and has been used extensively in concurrency
theory [88,66]. Our use of temporal-logic constraints over history sequences (sequences of
accumulating records of past behavior) is distinct from most previous approaches (although
Stuart uses a similar idea [111]). Because histories include all information about previous
events and their interrelationhips, they facilitate use of complex information about the past.

B.3 GEM: An Informal View @

Because our approach is somewhat unconventional, it is useful to begin with an informal
description of the GEM world model. This discussion will be formalized later.

Our event-oriented representation is based on the view that the world can be modeled
as a myriad of interrelated events occurring at locations (see Figure 5.2). The most basic

4While it is nonstandard, we have found it advantageous to view causality as a phenomenon more akin
to enablement. To say that class A causes class B means that any event of type B must have been "enabled
by" an event of type A. However, an occurrence of an event of type A does aot guarantee that it will cause
an event of type B. If, however, such a relationship does exist, it is perfectly reasonable to say that it is
causal. If an eventuality requirement is also desired, it must be stated explicitly.

,of course, many models do associate events with their performing agent. Nonetheless, this is a very
limited form of event structure.

69

.g

- -- * -

V.

A4.

dots *vent

circls - eea'n-

polygon group

.4'

Figue 5.: EvntsElemntsand roup

70.

?.

events are atomic; they are not observably decomposable. Nonatomic events are then
composed of these atomic events. Three partial relations may hold between events: a causal
relation -- , a temporal order ==*, and a relation that embodies required simultaneity t.
Structural relationships are also used to describe event locations as well as nonatomic event
composition.

A useful way of understanding our world model is as a two-tiered structure. The upper
tier is based on partially ordered sets of events related by -,., =*, and = as well as by
structural relationships. We call a particular set of interrelated events a world plan. (Figure
5.2 might be viewed as a pictorial representation of a particular world plan.) The lower
tier of our world model consists of the set of executions admitted by a world plan. It is this
lower tier that is usually identified as the "world model" in most state-based representations.
Because each world plan may allow many possibly executions, branching state models are
conventionally used to represent this execution-level view of the world. However, we have
found it easier to reason about the world primarily in terms of world plans (the upper tier).
These structures are definitely a more compact representation than branching state models
- in fact, they correspond directly to the usual notion of a "plan."

A world plan also more clearly represents what is actually "knowable" about a domain -
i.e., it models the observable and necessary qualities of a domain. For example, if ==* (el, e2)
is true of a world plan, el must occur before e2 in every domain execution. However, if
two events are observably unrelated temporally (they are unrelated by == in the world
plan), in some world executions they may occur in a particular order, while in others they
may be simultaneous. (In fact, any two events that are unrelated by =* are potentially
simultaneous.) In contrast, if ; (el,e2) is true of a world plan, el and e2 must occur
simultaneously in every world execution. The distinction between known relations and the
executions admitted by them is especially useful when dealing with parallel domains. For
example, people can usually perceive the known temporal order of specific world processes
(and thereby can reason easily about them), but find it difficult to know exactly how these
processes are interleaved (the actual world executions). World plans are thus a much more
intuitive way of viewing the world than are world executions.

Because GEM's causal relation is nonstandard in some ways, it merits some additional
clarification. As mentioned earlier, our causal relation -,- is weaker than in other represen-
tations (for example, McDermott's [80]) in that it decouples causality from eventuality. A -

class of events (say Reservations) may hold a causal relationship to another class of events
(Seating events), but the mere occurrence of an event of the first class does not necessarily
entail that it will inevitably cause an event of second type. Once an event does cause an-
other event, however, this relationship is represented explicitly. Of course, if an eventuality
requirement is also desired, it can be specified by using a temporal logic constraint (i.e., we
could say, "Every reservation must eventually cause a seating").

Our causal relation also implies an ordering in time (if el causes e2, it must also occur
before e2). Therefore, we distinguish between causality and identification of events (for
example, the identification of a light-switch-flipping event with the event of turning on
the light). However, our use of the simultaneity relation - enables modeling of event
identification and other forms of required simultaneous activity. As in most representations

71

-. _,

C

using causality, GEM's causal relation is irreducible and must be induced from outside the
logic.

As mentioned earlier, events in a world plan are also clustered into locations. The most
basic type of location is a locus of forced sequential activity; that is, all events belonging
to such a location must be totally ordered within the temporal order =.. We call these

40 sequential locations elements and they are depicted in Figure 5.2 as circles.

Elements (and the events composing them) may also be grouped into larger regions of
activity. We call these locations groups, depicted in Figure 5.2 as polygonal areas. When
forms of activity loi-ically occur at the same "location," but are not necessarily sequential,
it is natural to model the location as a group consisting of many elements. For example, one
might model a robot arm as a group consisting of many sequential elements. As illustrated
in Figure 5.2, groups can be composed hierarchically or overlap.

Group structure is used by GEM to impose constraints on the causal relationships among
events. In essence, the group boundaries may be considered just that - boundaries of causal
access. Thus, groups A and C in Figure 5.2 might each be used to represent locations of
activity within a robot (perhaps different segments of an arm) that can be causally related
only through activity in group B (a joint). In contrast, the activity at element 7 is accessible
to all locations (can be caused by activity at all locations - i.e., it is global). The activity
at element 8 is not only accessible to activity within groups A, B, and C, but, because it is
part of groups A, B, and C, it can affect or cause activity at all locations (it could perhaps
represent the robot's brain). A group may also be associated with ports or access holes that
serve as causal interfaces between the group and the events outside it.

The "state" of the world at any particular moment is modeled in GEM as the sum of
past activity that has occurred. States embody not only what is true at particular moments,
but also what has occurred in the past; we therefore call them histories or pasts. This view
of state as an event history actually conforms quite naturally to what humans know about
the world. If we allow events that model observations, then what can possibly be known
at any particular moment (i.e. the known state of the world) will be derivable from the
events that have occurred (i.e., past observations and actions). If we further categorize
past activity into those sets of events occurring at, or observable from, particular sets of
locations - say, those associated with the particular group modeling a robot - we can then
model the "beliefs" of that robot as its localized view of past activity.

GEM's entire representational capability is built upon the basic framework we have just
described. A GEM specification describes a particular domain by delineating the kinds of
events and event structures found in the domain and then imposing constraints on the set
of possible world plans (and therefore on the set of possible world executions). In the GEM
specification language, constraints on actions and their interrelationships are formulated in
first-order temporal logic over sequences of histories (world executions). These constraints
may be scoped or applied within locations of activity. All of these capabilities are formalized
and illustrated in the next two sections.

72

-, i.* * ' 4" € . ,. v . • . ~ - . -- -.. . .,' . . ° ° . .- * . . ° - . . . - .. .

C Domain Model n

As stated in the preceding section, the GEM model may be viewed as two-tiered: the
upper tier models the world in terms of world plans (sets of interrelated events, elements,
and groups); the lower tier models the actual physical executions allowed by world plans.
Each world plan is composed of a set of unique objects, called events, that are related by -7
a temporal ordering ==>, a causal relation -,-+, and a simultaneity relation ;-. Events are
also grouped into elements which may further belong to groups (groups may also belong to
surrounding groups).

W = < E, EL,G,= ,>,- , ,(>

" E = A set of event objects

* EL = A set of element objects

" G = A set of group objects

0 ==>: (E x E) The temporal ordering

0 --,: (E x E) The causal relation

* =: (E x E) The simultaneity relation

E : (E x (EL U G)) U ((EL U G) x G) A subset relation between events
and elements or groups in which they are contained, as well as between
elements and groups and the surrounding groups in which they are
contained.

For now we assume that all events are atomic. Thus, each event in a world plan models
an atomic event that has occurred in the world domain, each relation or ordering relationship
models an actual relationship between domain events, and each element or group models a
logical location of activity. In Section E we shall extend this basic model to accommodate
nonatomic events. Note that our assumption of event atomicity does not imply that events
are totally ordered; they may happen simultaneously. From an intuitive standpoint, it might
be useful for the reader to view each atomic event as the endpoint of some logical world
action.

Every event in a world plan must be distinct; it may be viewed as a unique token. Events
may be parameterized and may also be organized into types, each of which represents some
class of world events. For example, Paint(Object, Color) could represent the class of world
events, each of which paints an object a certain color. A specific instance of this type would
be paint (ladder, red). Lowercase tokens are used to denote specific event instances, while
uppercase is used for event classes or types. A similar convention is used for parameter
values and types, as well as for group and element instances and types.

As described earlier, events are related by three kinds of partial relationships, =., --- ,

and =. The temporal order = is an irreflexive, antisymmetric, transitive relationship that

73

models event ordering in time.6 The causal relation - is irreflexive and antisymmetric, but
not transitive - it represents "direct" causality between events. Every domain is, by default,
associated with a constraint that requires causally related events to also be temporally
related (-'-,(el,e2) D ==.(e1,e2)), but the reverse is not true; just because two events may
be forced to occur in some sequence does not mean that they are causally related. Finally,
the simultaneity relation is reflexive, symmetric, and transitive, and models a necessary
simultaneous occurrence of events.

In addition to being ordered, events are also clustered into elements. These elements
(as well as other groups) are further clustered into groups. The events considered part of
a group are precisely those belonging to the group's constituent elements and groups. The
structure of a domain is conveyed by the set membership relation E.

Particular domains are represented in GEM by domain specifications. Each specification
will allow a set of world plans and the world executions conforming to those world plans. A
specification is built by delineating locations of activity (elements and groups), stating the
types of events that may occur at these locations, and, finally, imposing constraints on the
possible relationships among those events. Some of these constraints are domain-specific
(for example, the constraints that describe the seating rules of the restaurant domain);
others apply to all domains (e.g., the total ordering constraint on events belonging to the
same element). The basic form of a constraint is a first-order temporal-logic formula that
is applied to the possible executions of a given world plan. The next section describes a
semantics for such constraints.

C.1 World Executions: Histories and History Sequences

A world plan, as we have described it, is actually a structure that captures or represents
many potential executions in the domain being modeled. For example, consider the world
plan in Figure 5.3. It can actually be executed in three ways:

Execution 1: 1st a 2nd b 3rd c 4th d
Execution 2: 1st a 2nd c 3rd b 4th d
Execution 3: 1st a 2nd b,c 3rd d

C Note that, in the third execution, b and c occur simultaneously. Although we know that
one of these world executions may occur, we cannot assume any one of them actually does.

The possible executions of a world plan may be viewed as linear sequences of " states,"
where each state is a record of past activity. We call such a state a history or past.7 Each
history a of a world plan W is simply a set of partially ordered events that is a prefix of

'Note that we make no use of explicit time values. In multiagent domains, it is actually disadvantageous
to rely on such values for purposes of synchronizaton; the use of a partial temporal ordering is a much safer
avenue for assessing the relative occurrences of events. However, actual time can be incorporated into GEM
by associating each event with a time parameter and requiring that the temporal ordering conform to these
event time stamps: (V el(tl), e2(t2)) [tl < t2 D ==* (el(tl),e2(t2))].

7 The reader should be warned that the term history has been used by others in different ways - for
example, for a particular sequence of states. Here the term refers to a snapshot of the past - i.e. a record
of the events that have occurred and their interrelationships.

74

c(a,ell) c(b,ell) c(c,e12) c(d,e12)
c(eli,g) c(e12,g)

Figure 5.3: A World Plan

75

that world plan; it therefore may be described in the same way as a world plan, i.e., for
history a, we could use < E,ELt,Go,,==,,=,- c,, >, where Eo, C E, EL,. C EL,
Go, C G, ==* is a subrelation of ==, etc. Each history represents a possible point in an
execution of the world plan, plus everything that has happened until then. Essentially, it
is a record of past activity up to some moment in time.

For the world plan in Figure 5.3, there are six possible histories or pasts, consisting of
the following sets of events (as well as their interrelationships):

ao :{} ai :{a} aj :{a,b} ak :{a,c} am :{a,b,c} an :{a,b,c,d}
For instance, state aj describes the state in which events a and b have occurred, and in
which, moreover, the relations ==,,, (a,b), ,,(a, ell), E,,,(b,ell), and e,,(ell,g) all hold.

* Given this notion of history ("state"), the possible world executions permitted by a
world plan may be described as sequences of histories - whichi we shall call valid history
sequences (VHS). For each VHS, every history in the sequence (except the first) must be
a superset of its predecessor. Moreover, two events may enter a given VHS in the same
history only if it is possible for them to have occurred simultaneously, i.e., if there is no

Cexplicit temporal ordering relationship between them. For example, if ==*(el,e2), then el
and e2 would have to enter a VHS in distinct histories. By the same token, if two events
must take place simultaneously (e.g., ; (el, e2)), they must always enter a given VHS in

the same history. A history sequence is said to be complete if it starts with the empty
history.

* For the world plan in Figure 5.3, there are three possible complete VHSs - SI, S2, and
S3 - corresponding to the three possible executions of the world plan given earlier:

S1: ao ai aj am an = lsta 2ndb 3rdc 4thd
S2: a0 ai ak am an lsta 2ndc 3rdb 4thd
S3: ao ai am a, st a 2nd b,c 3rd d

Note that one way of representing the possible history sequences of a world plan might be
as a branching tree. For example, we would have

/ aj -* am - O n

aO - ai -" ak -- am -" n

am On

This corresponds to the branching tree of states used by McDermott; a chronicle corresponds
C to a VHS [80]. However, by representing this tree as a world plan (i.e., the form depicted

in Figure 5.3), information about possible world executions and observable relationships
between events is conveyed in a more compact form.

C.2 Constraint Semantics
(

Now that we have valid history sequences, we have a framework for defining the semantics
of formulas in first-order linear temporal logic. First, we consider simple nontemporal first-
order formulas Q. Each such formula is composed in the standard fashion, with the usual
quantifiers and connectives (A, V, -,D, =,V, 3, 3!). 8 Event, element, and group instances,
as well as event-parameter values, are used as constants, over which range event, element.

OThe quantifier 3! denotes existence of a unique object.

76

group, and event-parameter variables. The predicates that may be used in these formulas
are occurred, the infix predicates , ==>, -, e, and equality, as well as arithmetic com-
parison of parameter values. The interpretation of formulas is standard. Given a history a
described by < Eo, EL,,,G,,, =,a, -- a ca >, we have

a =occurred(e) =eEEc,

a el ==> e2 = -==-c,(el,e2)
a c el -, e2 = (el, e2)

akxey = yE(zy)

A typical nontemporal first-order formula is the following: (V e:E)[occurred(e) D (3
f:F)[f-,.e]]. This might be read as follows: "Every event of type E that has occurred must
have been caused by an event of type F." Free variables in a formula are considered, by
default, to be universally quantified.

Linear temporal operators are modal operators that apply formulas to sequences.9 The
most common temporal operators used are 0 (henceforth), 0 (eventually), 0 (next), and U
(weak until). In most temporal logics they apply formulas to sequences of states [88]. GEM
follows traditional formulations of linear temporal logic, but applies the modal operators
to sequences of histories (i.e., to VHSs). Given a valid history sequence of the form S =
a0,al, we use the notation S[i] to denote the ith tail sequence of S - i.e., a1 , a i+i.
Note that S = S[O]. Also notice that every tail sequence of a VHS is also a VHS.

We then define the semantics of temporal formulas as follows:

Henceforth P: S[ij 1= OP = (Vj > i) Su P
Eventually P: S[i] I OP = (3j >_ i) S] l P
Next P: S[i]kOP S[i+] HP
PUntilQ: S[i]kPuQ (Vj2i) Sj] PV

(3j _ i)[Sul k Q A (Vk, i < k < j) S[k] P

A nontemporal formula Q is true of S[i] if it is true of a,: S[i] k Q =_ ai P Q. ,

To enhance the specification of properties dealing with past activity, we also introduce
the backwards temporal operators A (before), L (until now), P + (Q back to P), and INIT
(initially). Although somewhat nonstandard, they have been used elsewhere [7].

S[i] [AP S[i- 1]=P
Sfilj hP (Vk,0O<k<i) S[kIkP

S[i]k P S[i] = Q v
(3j,O0 < j _< i) [S[j] P PA (Vk, j < k < i) S[k] Q]

9This is in contrast to branching-time temporal logics, which regard time as a branching tree. In these
logics, the modalities can vary according to how they are applied to the various paths through that tree.
We have found linear temporal logic to be adequate and simpler to use.

77

We define INIT P to be 5 [(-,(3e)occurred(e)) D P]. In other words, P is true of the
empty history. At the beginning of a VHS, S[O] H AP is false for all P.

Because we shall be creating structured specifications in which constraints are imposed
on limited contexts, it is also useful to define localized or scoped versions of the temporal
operators. For example, what happens next in a particular context may be different from
what happens next in the domain as a whole.

Suppose we have a VHS of form o0 an. Let us assume that context is a set of events.
We then define a0 ... anlcontewt to be the history sequence remaining after histories that
satisfy the following formula have been removed:

occurred(e) A L-noccurred(e) D -ne (context.

In other words, we eliminate from ao an all histories that are formed solely through
the addition of events outside context.

Given any valid history sequence S, we then define the scoped temporal operators as
follows:

S I- Ocontext P 5jcontext k- 0 P

S 1=_ *context P S lcontezt H Q P

*S k Qcontext P Slcontext k 0 P

and similarly for other temporal operators. 10

Finally, first-order temporal logic formulas may be applied to a GEM world plan by
viewing a world plan W as the set of all its complete valid history sequences. A world plan
satisfies a constraint if and only if all tail sequences of its complete valid history sequences
satisfy that constraint

W P =(V complete VHS S of W)(Vi > O)S[i] H P.

For example, the world plan in Figure 5.3 satisfies O(occurred(d) D b ' d A c = d),
but not O(occurred(c) D occurred(b)) (VHS S2 does not satisfy it)."

1OThe use of contexts may also be convenient for describing scoped or localized forms of state. For example,
a state of the world a relative to a particular context would be a state r', where all noncontextual events have
been removed. If a particular context corresponds to the events that are part of, or visible to, a particular
agent, then the scoped state with respect to that agent would correspond to the agent's perspective upon,
or beliefs about, the past.

"The temporal operator 0 can actually be removed from both of these constraints, because they apply
to all tails of complete VHSs of a world plan.

78

. " .,a - . -_ .o , ., - ' , . ,e . €,- ,-. . .. • ,' ." /" ." " e' " e',,q _," -_." - -. - -- ..-- -.... - ', -

• , "." ". ,-' "", "'. " ',2. " ", '. ,% ,:--' """',"% "'' '"''" " ''' ",'' :"

D Domain Specifications

In the next three sections, we demonstrate how GEM domain specifications are built by
actually constructing a description of the restaurant scenario presented earlier. We begin
with an overview of the general structure of the GEM specification language and describe
how typical kinds of constraints are formed. In Sections E and F we address such issues
as the specification of nonatomic actions, state description, and the frame problem. A
complete specification of the restaurant scenario is given in the appendix.

D.1 Specification Structure

The GEM specification language is a set of notational conventions for writing constraints on
world plans. Viewed semantically, a specification a is equivalent to (can be expanded into)
a set of first-order temporal-logic formulas over valid history sequences. Each specification
defines a class of world plans by stating explicitly: (1) what types of events may occur;
(2) how those events must be clustered into elements and how elements and groups are
clustered into groups; and (3) what constraints exist on relationships between events and
their parameter values.

Just as elements and groups model the structural aspects of a domain, they also serve
as the structural components of our specification language. Each specification a consists
of a set of element and group declarations, along with a set of explicit constraints on the S

events that belong to those elements and groups. Each element is associated with a set of
event types, and each group is composed of a set of elements and other subgroups. The
events belonging to an element may be only of the designated types associated with it. The
events belonging to a group are taken to be those belonging to the group's elements and
subgroups. Constraints are "scoped" within the context in which they are declared; i.e.,
they are imposed only on those events that belong to the element or group with which they
are associated. However, the temporal operators are scoped with respect to a context only
if scoped temporal operators are used. Thus, if we write OP, then P must be true of the
next state in the entire world execution, not just the next state in which an event in the
particular element or group occurs.

GEM also includes a mechanism for describing element and group types. These may
be parameterized and are definable as refinements of other previously defined types. Each
instance of a defined type is a unique element or group with a structure identical to that
of its type description. From a semantic standpoint, the use of types and instances may be
viewed as a simple text substitution facility; each type instance is shorthand for a separate
but identical element or group declaration.

79

_W . --

For example, we might describe the class of restaurant tables as follows: 12

RestaurantTable (size:INTEGER) = ELEMENT TYPE.
EVENTS

Occupy(p:Party)
Vacate(p: Party)

CONSTRAINTS

END RestaurantTable

A declaration of the form

table[l..5] = RestaurantTable(l0) ELEMENT

would declare table[1]...table[5] to be tables of size 10. The notation table[l].size yields
table[1]'s size value (in this case, 10). table[1].Occupy and table[l].Vacate refer to the class of
Occupy and Vacate events belonging to table[l], respectively. The notation table[l].occupy(p)
denotes a particular Occupy event instance. 3

The structure laid out by a set of group and element declarations creates a framework r.
associated with implicit (default) constraints. Domain-specific constraints are then added
on top of this framework. Default constraints include the following (we give only an informal
description of these constraints here; for a more formal description, see [651):

04

" The only events, elements, and groups allowed within a valid world plan are those
delineated by the specification. We are essentially minimizing the potential structure
of world plans with respect to the domain specification. Events must be clustered into
elements and element/group structures must be formed as described in the specifica-
tion.

" All events belonging to the same element must be totally ordered temporally:
(V el,e2,elem) feleelem A e2eelem A else2 D el =* e2 V e2 * ell.
For instance, we might represent the restaurant lobby as follows:

12This description models only two types of events that can take place at a table. Of course, if we wish
a table to be associated with broader forms of activity, it could be modeled as an element with more event
types or, alternatively, as a group consisting of many elements. For example, to represent the simultaneous 444

lifting of both sides of a table, each side of a table could be modeled as an element associated with "lifting"
events. We could also model these events as being performed by the agents that do the lifting. We could
even do both (have lifting events at the table and the lifting agents) and identify the two. This form of event
identification is illustrated in Section D.4.

13A more typical event notation might be occupy(table[l],p). However, we have found dot notation to be
very useful for denoting events that occur at particular elements or groups.

80

.-91

lobby = ELEMENT
EVENTS

Enter(f: Friend)
END lobby

While lobby is not associated with any explicit constraint, its events must still be
totally ordered - i.e., people may enter the lobby only one at a time.

e As stated earlier, we use groups as a way of representing limitations of causal effect.
Essentially, the "walls" of a group form a boundary through which causal effect may
probe outward, but not inward. 14 The one exception to this rule is the use of ports:
"holes" in the group boundary. If an event is a port for a group g, that event can be
affected by other events outside g. Let us assume that the atomic formula port(e, g) is
true for every event e that is a port of group g. The formal constraints on the causal
relation imposed by group structure may be described as follows.

Suppose that eleell and e2eel2. Then el may cause e2 (el -- * e2) only if:

access(ell,el2) V [port(e2,g) A access(ell,g)].

We define access(x,y) to be true if either (1) x and y belong to the same group or
(2) there is some surrounding group g' such that y belongs to g' and x is contained
within g' - i.e., y is "global" to x. We say that an element el or group g belongs to a
group g' if it is explicitly declared as one of the components of group g'. We say that
el (or g) is contained within g' if there is some hierarchical scoping of groups gl...gn
such that el belongs to gl, gl belongs to g2, ... and gn belongs to g'. (By convention,
we assume that all elements and groups modeling the world are contained within a
single surrounding group.)

For example, the specification structure for the restaurant domain is shown in Figure
5.4 (only one party with one friend, one taxi, and one restaurant table are depicted).
Notice how the friend has access to the taxi, the reservation desk, the restaurant
lobby, and also to the Vacate actions at the table (an asterisk marks port event
types). However, a friend cannot directly affect Felix's personal observations, nor can
she directly occupy a table (guests must be seated by Felix).

We now define some of the domain-specific constraints for the restaurant domain. Be-
cause many constraint forms arise repeatedly, it is useful to have abbreviations for them. We
shall take some liberties in devising these abbreviations, appealing to the reader's intuition.
However, all of these constraints are more rigorously defined elsewhere [65].

"4This is much like the notion of scope in programming languages, except that groups may overlap as well
as form hierarchies.

81

,,.

restaurant-scenario

prty fri end
felixworid

reservati ,ns movement
observatlions

table lobby

Occupy

taxi

Figure 5.4: Restaurant Domain Structure

82

D.2 Prerequisite Constraints

Probably the most common kind of constraint is the strong prerequisite, denoted El - E2.
This constraint requires that each event of type E2 be caused by exactly one event of type
El, and that each event of type El can cause at most one event of type E2. In essence,
this is a one-to-one causal requirement. The definition of this constraint is as follows: -

El--E2 =
(Ve2: E2)(3! el : E1)[el -, e2J] A
(Vel : El)(3 at most one e2 : E2)[el -,-+ e2]

In Section D.3 we use a strong-prerequisite constraint to describe the one-to-one causal
relationship between reservation and seating events: Reserve --- Seat. We can also use it
to define the constraints of the RestaurantTable element type. Constraint 1 uses a regular-
expression notation as shorthand for a more complicated pattern of strong-prerequisite
constraints. 5 Each Vacate(p) event must have a one-to-one causal relationship with a
preceding Occupy(p) event, and each Occupy event (except the first) must have a one-to-one
causal relationship with a preceding Vacate event. This restricts the events at a table to
be of the form occupy(pl ,vacate(pl)--occupy(p2)-vacate(p2)-,-..... Namely, a table is a
resource that can be used by only one party at a time.1 6

RestaurantTable (size:INTEGER) = ELEMENT TYPE
EVENTS

Occupy(p: Party)
Vacate(p:Party)

CONSTRAINTS
1) (Occupy(p) - Vacate(p))

END RestaurantTable

Taxis and cars are other resources that are described in a similar fashion. In the following
we use the element type hierarchy to first describe a Vehicle element type. and then further
define taxis and personal automobiles as Vehicles.

15(z)* - denotes zero or more repetitions of r separated by - A formal semantics for prerequisite
expressions is given in my dissertation [65].

"8 Note that, although a party may "occupy- a table only once before it vacates, this does not preclude
members of a party from leaving the table in the interim As we shall see later, while some of the seating
actions of party members are identified with "occupying" the table, not all are Likewise not all departures
from the table are identified with the party's actually vacating the table

R1N#VJ PWTMW1rWUffW .~

Vehicle = ELEMENT TYPE
EVENTS

Occupy

Drive(IocI , loc2: Location)I

* CONSTRAINTS
1) (Occupy - Drive(locl,Ioc2) -fVacate)
END Vehicle

Taxi =Vehicle ELEMENT TYPE
* Auto =Vehicle ELEMENT TYPE

Another useful form of prerequisite constraint combines strong prerequisite constraints
to model activity that forks or splits from an event, or joins into an event:

EventFork : E -- + {E1,...En} (VIi, 1 < i <n) E- Ei
EventJoin: {El,...En} -- +E (Vt,l < i < n) Ei -*E

Another common form of prerequisite relationship between events is the nondetermin-
istic prerequisite {El ... En} -~+E, defined as follows:

(Ve :E')(3!ei : El,..., En)[ei..- e] A
(Vei f {EI,-.., En})(3 at mc.st one e : E)[ei -'. eJ

* In other words, each event of type E must be caused by exactly one event of type El or
E2 or... En, and an event of type El or... En can cause at most one event of type E. This
is useful for specifying situations in which exactly one (undetermined) mcinber of a set of
posIbl" event types can cause another event.

Another form of noideterministic behavior is .he nondeterministic fork:
9

F -+{El....,En}

fEl, ... En})(3!e :E)[e,.. ei]A
= r at most one ei :{E1, ...En))e"- ei]

I., .,tLp'r word!r. all events of type El or ... En must be caused by an event of type E,
-.- tit of type E can cause only one such event."7

Wn! r-ti t" note that that bath the nondeterministic prerequisite and the nondeterministc fork
I-r * ~ aio the strong prerequisite if we comrbine an event class set into a single even* class. For

Fu ujEnthenE, ... En - +E F E and E-+E,.En) E--

84

66- -b

D.3 Priority, Mutual Exclusion, Eventuality

To specify Felix's seating rules, we need a way of describing synchronization properties
among events. This is easily accomplished with temporal formulas. First we define the
abbreviation el cbefore E2 (el is causally before the class of events E2) as follows:

el cbef ore E2 - occurred(el) A -,(3e2 : E2)[el - e2]

This may be read, "el has occurred but has not yet caused an event of type E2."

We can now express priority and mutual-exclusion properties by using the following
kinds of constraints:

" Priority of causal transitions from el to events of type E2 over those from e3 to events
of type E4:

(el cbefore E2 A e3 cbef ore E4) D 0 [(3e4 : E4)e3--- e4 D (3e2 : E2)el --- (2]

In other words, if el is pending at E2 ande3 is pending at E4 at the same time. then,
from that moment on, if e3 actually does cause an event e4, el must have already
caused an event e2 (el must cause its corresponding event before e3 does).

* Mutual exclusion between intervals in which'el and e3 are causally pknding.

-(el cbefore E2 A e3 cbefore E4)

If we define tbefore as follows:

el tbefore E2 = occurred(e1)A -'(3e2 : E2)[el = e2]

then temporal forms of mutual exclusion and priority can be expressed as well e.g.,
constraints of the form

-'(el tbefore E2 A e3 tbe fore E4 4.

Going back to the restaurant scenario, we have t he following description of -elix's reser-
vation desk:

S 5
iM

reservations = ELEMENT
EVENTS

Reserve(p:Party, b:Bribe)
Seat(p:Party, t:RestaurantTable)

CONSTRAINTS
1) To be seated, a party must have a reservation. Moreover, each reservation is

good for only one seating.
Reserve(p,b) - Seat(p,t)

2) Parties can be seated only at tables of the right size.
occur(seat) D seat.p.size = seat.t.size

3) A bigger bribe will get you seated faster.
reservel cbefore Seat A reserve2 cbefore Seat A reservel.b > reserve2.b D
0 [(3 seat2:Seat) reserve2-,-seat2 D (3 seatl:Seat) reservel-,+-seatl

4) All other things being equal, seating is first-come-first-served.
reservel(pl,bl)==.reserve2(p2,b2) A bl=b2 A
present(pl) A present(p2) D
o [(3 seat2:Seat) reserve2-seat2 D (3 seatl:Seat) reservel-,+ seatl

5) A $50 bribe will definitely get you seated. ,,
reserve.b > $50 D C> (3 seat:Seat) reserve--+seat.a

END reservations

Note how the temporal operator 0> (eventually) is used to describe the rule for eventual -.
seating, given a $50 bribe. The state description present(p) represents states in which all ..e

members of party p are present in the lobby. It is defined to be true precisely at the time .

all the friends in party p have arrived in the restaurant lobby but have not yet been seated.
The definition given below thus illustrates the use of event-based formulas to define state
predicates (see Section F).

present(p) =- (V f:Friend, fcp) (3 enter(f):Lobby. Enter)
enter(f) cbefore Reservations.Seat

D.4 Simultaneity

One way of establishing relationships between the private events of restaurant guests and
those of the restaurant's logical components is to form identifications between them. For
example, we can identify a reservation event performed by one of the friends in a party with a'

the reservation event at the restaurant desk. Similarly, we require that Felix's seating of a
party coincides with a sitting action by each member of the party. These identifications will
force all restaurant guests to comply with Felix's seating rules. Event identification (as well
as other forms of required simultaneity) is accomplished by using the simultaneity relation S-

. In particular, we use the following kinds of constraints:

El - E2 (Vel E1)(3e2: E2)[el e2]
El : E2 (Vel : E1)(3e2: E2)[el e2] A (Ve2 : E2)(3el El)[el - e2]

86

Note that El ;- E2 is equivalent to El ,' E2 A E2 El. The constraint El - E2
identifies all event. o)f type El with events of type E2, but not vice versa. For example, all
of Felix's Seat events must be identified with Sit actions by members of a party, but not all
Sit actions by a particular person need be identified with seating by Felix.

We begin with a preliminary description of a friend. Each friend is made up of movement
events, communication events, and use of a personal automobile. Note that events at each
of the elements composing a friend must be sequential, but events occurring at different
elements may be simultaneous (as long as they conform to the domain constraints). Thus,
people can potentially communicate and move at the same time.

Friend = GROUP TYPE (m:Movement, c:Communication, a:Auto)

Movement = ELEMENT TYPE
EVENTS

Ride(Iocl,loc2: Location)
WaIk(loclIoc2: Location)
Sit(tableloc: Location)
Eat

END Movement

Communication = ELEMENT TYPE
EVENTS

Reserve(p:Party, b:Bribe)
OrderFood(food: Food)

END Communication

A party consists of a set of friends, the reservation desk, and the lobby: s

"The notation f.c.Reserve denotes events of type Reserve occurring at the Communication element c of
Friend f. SELF is used to denote the group constant associated with each particular group instance. Thus,
when the Party type definition is instantiated, SELF will be replaced by each Party instance's group constant.
The function setsize yields the cardinality of a set.

87
".

VRumvwvwwwVj

Party(size:INTEGER) = GROUP TYPE ({f}:SET OF Friend,reservations,lobby)
CONSTRAINTS %
1) size must be the size of the set of friends.

size = setsize({fJ)
2) A reservation by a friend is identified with a reservation at the desk.

f.c.Reserve(p,b) t reservations. Reserve(p,b)
3) All members of a party must be seated simultaneously.

(V f' c {f}) reservations.Seat(SELF,t) - f'.m.Sit(t)

4) In order to be seated, all members of the party must be present.
(V f' e {f) Iobby.Enter(f') -reservations.Seat(SELF,Table)

5) The first friend to enter the lobby must make a reservation.
(V fl,f2 e {f}) occurred(Iobby.enterl(fl)) A

-,(3 Iobby.enter2(f2)) [Iobby.enter2(f2)==:Iobby.enterl(fl)] D
0 (3 reservel:fl.c.Reserve(SELF,b)) occurred(reservel)

END Party

We can also now specify Felix's world, consisting of the reservation desk, the lobby, a
set of tables table[1].. .table[10] (these are assumed to have been instantiated), as well as
Felix's personal observations or thoughts. One sort of observation that Felix may make is
whether a table is empty. Later on we shall add an extra constraint that allows Felix to
-"ake such observations only if the table is indeed empty. For now, however, we assume
that Felix always makes accurate observations. He will not seat a party unless he thinks a
table is unoccupied. Note that this is different from saying that a seating may take place
when the table is free.19

observations = ELEMENT
EVENTS

EmptyTable(t)
END observations

felixworld = GROUP (reservations, table[1.l1O], lobby, observations)
PORTS(table[iJ.Vacate)

CONSTRAINTS
1) Felix must observe that a table is empty before he can seat a party there.

observations. EmptyTable(table[i]) -- reservations. Seat(Party, table[i])

2) Seating a party at a table is the same as occupying the table.
reservations.Seat(p,table[i]) table[il.Occupy(p)

END felixworld

"9 We could have chosen to do this as well; we just wanted to illustrate the use of "observation" events.

88

-p

E Nonatomic Events and Hierarchical Description

We now digress from our development of the restaurant domain specification to discuss
the use of nonatomic events within the GEM framework. The inclusion of such events is
relatively straightforward once it is realized that a nonatomic event can be described by
using two or more internal events. In particular, we associate each nonatomic event type
E with two atomic event types E' and E", representing the initiation and termination of
E. We also add an additional constraint: E' ---- E" (there must be a one-to-one causal
relationship between the initial event and terminal event for each nonatomic event). A
nonatomic event e is in progress if the formula e' cbefore E" is true. Using this notation,
we can describe the various possible ordering relationships between two nonatomic events
a and b as follows (these are the same interval relationships used by Allen [3]):20

a before b = a" ==* b'
a equal b = a' b' A a" b"
a meets b = occursnext(a") D Q occursnext(b')
a overlaps b = a' == b' A a" b"
a during b = b' a' A a" =Vb"
a starts b = a' t b' A a" =. V
a finishes b b' ' a' A b" - a"

The use of initial and terminal events will be the basis for our addition of nonatomic
events to the GEM domain model. We extend world plans to include nonatomic events, and
also add a relation r, which models the composition of a nonatomic event - i.e., if K(e, f).
then e is a part of nonatomic event f. Thus, we now have world plans of the form

W =< E, EL, G,=::- E'. =,,F, >.

where F is a set of nonatomic events, and K : ((E U F) x F) is the part-of relation
between atomic (or nonatomic) events and nonatomic events. We require that, in all world
plans, there should exist for each nonatomic event f two atomic events f' and f" (its initial
and terminal events) such that ,(f', f) and K(f", f). We also have the following additional
constraints:

occurred(f) D f,', f"

e.- f D e-* f'

e ==* f D e == f'

f' e D f" e

f ==* e D fr e

e= f eF Af= e' A f" e"

ftel D feel A f"eel

feg D f'eg A f"Eg
20 The abbreviation occursnext(e) is defined by - occurred(e) A 0 occurred(e).

89

~~~ -c~x Z{~K~~-.Y 4-. 1



Note that a nonatomic event can be simultaneous only with another nonatomic event. We
consider them to be simultaneous if their endpoints are simultaneous. This is equivalent to
Allen's relation equal (see [3]).

To model a nonatomic domain action, we can now simply use two atomic events - its
initial and terminal events. Usually, however, it is preferable to associate nonatomic actions
with a particular form of behavior. For example, we might want to associate a nonatomic
event type with particular intervals over which some formula holds.

Suppose we have a formula P that is true of particular histories."' By using the following
constraint, we can identify a nonatomic event type F with every convex interval in which
P is true:

P A A-'P D
(3 f':F') justoccurred(f') A P U-(-' P A (3 f":F") [lastoccurred(f") A f'-,.f"])

where
justoccurred(f') occurred(f') A A -, occurred(f')
lastoccurred(f") A justoccurred(f")

Namely, in any history in which P becomes true, there occurs some event f' and. when P
is about to become false again, f" occurs.

Alternatively, we can choose to model nonatomic actions as particular patterns of be-
havior. This is actually much more appealing in an event-based framework. To describe
how a nonatomic event is achieved, we use an abbreviation of the following form:

F - El -... event pattern ... -En

This states that the nonatomic event type F is composed of a pattern of other event types,
beginning with an atomic initial-event type (here El) and ending with an atomic terminal-
event type (En). These initial and terminal event types are then identified (by using -,-)
with F' and F" respectively. If more than one way of achieving F is supplied, events ' and f"
for each nonatomic event f may be identified with any of the possible initial-event/terminal-
event pairs of event patterns that could compose f. Finally, we require that for all events ei
of type El ... En that compose an event f, r'(ei, f) must hold. Any arbitrary event pattern
or set of constraints may be used to describe the set of events composing a nonatomic event.
Such nonatomic events are therefore very similar to the notion of process used by Georgeff
and me [34].

We now return to the restaurant scenario. We can use a nonatomic-event description
to define the different methods the friends have for traveling to the restaurant. Earlier we
associated each friend with a Movement element containing an event type Ride(locl~loc2).
We can now view Ride as a nonatomic event that can be expanded in two ways:

Ride(Iocl,loc2) - auto.Occupy -- auto.Drive(locl,loc2) -- auto.Vacate

Ride(Iocl,loc2) - taxi.Occupy -. taxi.Drive(loclloc2) - taxi.Vacate

21 In other words, P is a state description.

90

%



II

Figure 5.5: Protected Nonatomic-Event Expansion

VP

The element variables auto and taxi must be bound to the friend's personal automobile or
to any taxi, respectively.

Note that, once Ride events have been expanded, they may cause interference with other
events in the domain that were not observable beforehand. For example, if there is only
one taxi in town and no friend wishes to use his or her personal auto, the Ride events for
all friends will, after expansion, be forced into a total ordering.

Unfortunately, it seems inevitable that the expansion of arbitrarily defined nonatomic
events will result in added complications (or even a violation of domain constraints) at
the resulting lower level of description. It is precisely for these reasons that hierarchical
planners such as NOAH must recheck domain constraints after each event expansion. This
is clearly an undesirable state of affairs. It can lead to a combinatorial explosion in the cost
of reasoning about and planning in such domains.

One way of getting around this problem is to limit the forms of behavior that can
constitute a nonatomic event. This limited form of behavior must lack interaction with
other events in the domain; it must somehow be encapsulated. Group structure, with its
associated causal limitations, is a candidate for achieving this needed encapsulation.

Consider a nonatomic event type F occurring at element elem. Rather than assume
that initial- and terminal-event types F' and F" also belong to elem (as is normally done),
we create a group g with port event types F' and F" (see Figure 5.5). Port events of the
form f' and f" serve as an interface between the rest of the domain and the protected forms
of activity within group g (which compose events of type F). We use the abbreviation

F -g E1 .....----En

91

i m m~ m o Dot Q .o..lo o -it . . . - v . . . . . . . . "V

,'W' , ],' ,, ,-. . -. ,,o ,,.,. ,',,-. ' ... ,. . ,.,-.¢, e.,- , -, , .,2 . ..3.. , .. m.. _..:..'.. .-..-.......- -..-. .. ...



for this kind of protected or limited event expansion. All events composing an event of type
F must belong to group g.

We can use protected event expansion to describe the nonatomic event type Order-
Food(food) in the Friend specification. To each Friend group we add a new subgroup of type
FoodOrdering.

FoodOrdering = GROUP TYPE (r:Sight, t:Thought, s:Speech)

Each Sight element is assumed to have an event type Read(menu), Thought has an event
type Choose(food), while Speech has an event type Utter(food). We then add to the Friend
specification the following constraint (fo denotes the FoodOrdering group belonging to the
particular Friend):

OrderFood(food) - fo
fo.Sight. Read(menu) --- fo.Thought.Choose(food) -- fo.Speech.Utter(food)

Each FoodOrdering group has no ports other than those of type OrderFood' and OrderFood".
Thus, if no constraints refer to events in the FoodOrdering group other than those constraints
explicitly associated with FoodOrdering, and if these constraints are also localized (i.e. they
utilize scoped modal operators), then interactions between a friend's food ordering activity
and other domain events cannot take place.

92



F State Description

As we have been trying to illustrate throughout this paper, many domain properties can
easily be described without the use of state predicates and, in some cases, more naturally.
However, such predicates are often useful for encoding or abbreviating aspects of past
behavior. Thus, we might want to write a constraint of the form "P is a precondition of
event e," without also stating in that constraint how P was achieved. For example, given

some sort of definition for P, we could use the Precondition constraint defined below: 2

Precondition(e,P) occursnext(e) D P,

where
occursnext(e) - occurred(e) A Q occurred(e)

The approach we will take to atomic state formulas once again emphasizes the duality
between state-based and event-based representations; just as many state-based descriptions
represent events as relations between states, so shall we represent state predicates dually
as formulas pertaining to events. The truth or falsity of an atomic state formula will thus
depend on the definition of its predicate.

In some cases, these defining formulas will form a complete description of the state
predicate. For example, we might define a predicate TableEmpty as follows:

TableEmpty(table)
-, (3 occupy:table.Occupy) occurred(occupy) V
(3 vacate:table.Vacate) vacate cbefore table.Occupy

If, for some history and table, there has never been a table.Occupy event or there is a
table.Vacate event that has not yet been followed by a corresponding Occupy event (i.e,
the table has been vacated but not yet reoccupied), then TableEmpty(table) is true in that
history. If this formula evaluates to false, TableEmpty(table) is also false.

We shall call such formulas complete predicate definitions. Given the TableEmpty defi-
nition, we have the following constraint on Felix's observations:

(V empty(t):observations. EmptyTable) Precondition(empty(t), TableEmpty(t)).

Notice that no frame problem arises when complete predicate definitions are used; the
atomic formula TableEmpty(table) is defined to be true for a particular table if and only if
its corresponding formula is true. Consequently, there can be no question about the effects
of unrelated events on its truth value; once true (or false), TableEmpty(table) remains true
(ur false) for a particular value of table until its defining formula becomes false (or true).

Sometimes, however, we shall want to use weaker, incomplete predicate definitions -
e.g., assertions of the form formulal D P and formula2 D -, P. In this case, we know that,
if formulal is true, so is P. However, if formulal is false, we cannot conclude -, P. This

2 To say that P is a precondition of all events of type E, we would write: (V e:E) Precondition(eP).

93 %

.



would be the case, however, if formula2 were true.2" Other types of incomplete predicate
definitions might include use of the temporal operators. These describe ways of attaining
P for particular histories. For example, we might have formulal D Q P or INIT P.

We may also want to build predicate definitions not only with behavioral (i.e., event-
based) formulas, but also with formulas that utilize other state predicates. For example,
we might have

-, P V Q V formulal D R

formula2 = P

R V formula3 D Q

where formulal, formula2, and formula3 are purely event-based. To find valuations for P, Q,

and R in a particular history, we could use an iterative-evaluation mechanism. Behavioral
portions of formulas would be evaluated first and then the formulas would be iteratively
simplified wherever possible. Of course, sometimes this will not yield a truth value for all
atomic formulas. For example, if formufa2 and formula3 are true and formulal is false, then
we have R A P A Q. However, if formulal and formula3 are false and formula2 is true, we
can conclude P but nothing more about R and Q (except that R 4. Q).

In order, to apply incompletely-defined predicates to all histories in an execution, it is
necessary to have some sort of frame rule to assert the persistence of P (or -,P) despite
the occurrence of other events. Such a rule is defined in Section F.2, which essentially
minimizes the effect of events on state formulas. In the future we hope to explore the use
of circumscription in the GEM framework [76].

Note that, unlike iormalisms based on STRIPS-like action descriptions, the use of predi-
cate definitions (both complete and incomplete) suffers from none of the problems created by
the possibility of simultaneous action. Since effects upon a world state are not prescribed in
the context of individual event descriptions (as is normally done in many state-based frame-
works), there is no confusion regarding the effect of simultaneous activity or any other form
of behavior. If the formula defining the truth-value of an atomic formula P is true of a
history, P itself is true of the history.

For example, suppose we have a domain with two events el and e2, plus the requirement
that, if el and el occur simultaneously, Q will be true. Otherwise P will be true. In GEM
we would simply state that el e2 D Q and -, el = e2 D P. These effects on P and Q
cannot be expressed in the classical STRIPS framework nor in in any framework that does
not accommodate event simultaneity and explicit relationships between events.

F.1 Add/Delete Axioms

The add/delete lists used in STRIPS-like framework, to define the effects of events on state
can easily be cast in terms of predicate definitions. Let , w, _x, Y, and _Z denote tuples

13Of course, for these definitions of P and - P to be consistent, -(formula I A formula2) must hold.

94

".



of free variables and/or constants. Event type E( ) denotes the class of events of type E
whose parameters match ; and P( ) matches those atomic formulas formed from predicate

symbol P and a tuple of variables or constants matching z.

Given this notation, for every event type E( ) that adds R(Y) under precondition P(3),

we use a declaration of the form Adder(E( ), P(z),R(Y)) and, for every event type F(w)

that deletes R(3) under precondition Q(;), we have Deleter(F(w),Q(;),R(y)). If these
Adder and Deleter declarations characterize the effects on R(Y) completely, we can use the

following predicate definition for R(;):2 4

(3 e:E('.)) [Adder(E(x),P(z),R(-Y)) A occurred(e) A 5 precondition(e,P(7)) A .21

(3 f:F(w)) [ Deleter(F(Z),Q(v),R(y)) A -0 precondition(f,Q( )) A e==f] ,

This states that R(Y) is true if and only if it has been made true and has not been
subsequently deleted. Of course, we might want to create other rules using Adder and
Deleter (for example, stating that something is true unless deleted), or use Adder and .0
Deleter to build incomplete rather than complete definitions. For example, if we stated

that the above formula only implies R(Y), it would be equivalent to the STRIPS rule (i.e.

the value of R(y) would become undefined after a Deleter event occurs). Notice that we
have also assumed that all relevant Deleter and Adder events have been explicitly stated.
Thus, we have invoked a form of closed-world assumption. Another alternative might have
been to use some form of circumscription over Adder and Deleter specifications.2 5 While ..
we tend to assume some form of minimization of the effects of events in this paper, we do
not wish to take a particular stand on how it is done. We intend to explore this further in
future work.

F.2 The Frame Problem

In many ways, several of the difficulties often associated with the frame problem find relief
in our structured event-based model. GEM's ability to structure events into elements and .
groups automatically imposes constraints that limit their effects upon each other. For ex-
ample, events occurring within nonintersecting groups cannot causally affect one another
except through explicitly-defined ports. Likewise, events occurring within the same element
cannot occur simultaneously, thereby limiting the amount of reasoning necessary to deter- A

mine the effects of simultaneity. Another important aspect of group/element structure is

2' Note that this formula can be expanded into a first-order formula by taking a disjunction over all possible ' -

combinations of Adders and Deleters.
21Our use of the closed-world assumption here has been made only with respect to the use of Adders and

Deleters for defining state predicates. It need not necessarily apply to the definition of state predicates in
general. For instance, the frame rule given in the next section assumes that some way of determining which
events affect which predicates is given, but does not state exactly how. Nor does the rule determine the
value of an atomic formula if it is affected by an event in some unknown way.

95 --:

N,



that it provides a well-defined framework in which nonmonotonic reasoning can take place.
For example, while we may discover new qualifications on previously known preconditions
for starting a car (e.g., that there be no potato in the tailpipe), groups provide a structure
in which to add and use these qualifications. For example, if we model the car as a group.
we could add new ports to that group which allow for the newly discovered kinds of effects.

While we may effectively use group/element structure to alleviate aspects of the frame
problem, there is still a need for frame rules in GEM. In particular, we still need a way
to complete incompletely-defined predicates. As we have so far described, the truth or
falsity of a state-based formula with respect to a particular history must be derived from
predicate definitions. Given that we want to build a computational system based on our
model, it will be inefficient to reevaluate these definitions for every history. This problem is
somewhat alleviated by the fact that event-based domain descriptions do not often employ
state predicates. Still, some sort of frame rule for carrying over atomic-formula valuations
from one history to the next seems to be necessary. The same rule can also be used for
extending incomplete predicate definitions to form complete predicate definitions.

We now describe a semantic frame rule of the form used by Gergeff [32]. Such semantic
rules avoid the difficulties usually associated with syntactic approaches to the frame prob-
lem. For each n-ary predicate symbol P and event e in a world plan. we add a formula
6p(e, ) to the world plan, where is an n-tuple of free variables. This states that. for
every X, if p(e, ) holds, then P( ) may be affected by e. (Note the similarity between i

and the Adder/Deleter classifications used in the previous section. 26 ) Ve then have the
following frame rule:

AP( ) A -'(3e)[ustoccurred(e) A 6p(e,x)] D P( ).

In other words, if P(T) is true in a given history and no event occurs that (-an affect P(.

then P( ) remains true.

While the formula bp(e, ) may certainly be different for every P. e. and x. a useful way
of defining 6 formulas in general is to assume that the predicate definitions in a particular
specification are complete. In other words, we could assume that only events of types
explicitly designated as affecting P() can affect P(). Suppose we define erntsct(P(x)) to
be precisely the set of events so designated. We then assert: 6p(e,.") c:(( rent.sPt(()).
The frame rule then reduces to: AP(z) A -(3 e ( eentset(P()))justoccurrd(.'j P(D ()

G Conclusion

This paper has presented a structured, event-based framework for representing the prop-
erties of domains with parallel activity. We have attempted to demonstrate its utility in
describing the complex properties of such domains in a coherent and semantically sound

2SAnd, as stated in the previous section, while we may wish to minimize ,6. we take no stand in this paper Id

on exactly how this is to be done.

96

N.%



fashion. Our model, designed explicitly for describing parallel domains, has a well under-
stood semantics (the semantics of first-order temporal logic) that has been used elsewhere
in concurrency theory. By the use of first-order temporal-logic constraints on history se-
quences, complex synchronization properties based on causality, temporal ordering, and
simultaneity can be expressed easily and naturally.

An important aspect of our model is its explicit representation of event location. This V%
is used to embody the structural aspects of a domain, to localize domain constraints, and
to impose constraints on the temporal ordering as well as on causal access. The model also
includes the notion of nonatomic events. State-based specifications can be incorporated by
describing state in terms of past behavior. We have presented a semantic frame rule for
such uses of state. However, we have also stressed the fact that many properties can be
expressed without resorting to state-based description.

We are currently constructing a planning system (GEMPLAN) based on the formalism
described in this paper. It is being written in Prolog on a Sun 3/50. The present system is
capable of generating multiagent solutions to blocks world problems [62]. Given an event-
based specification for a domain, the planner builds an initial world plan that reflects a
particular problem's initial and goal states. This event network is then filled in through a
process of incremental constraint satisfaction.

The planning search space in GEMPLAN may be viewed as a tree with a partial plan at
each node. When a node is reached, the system checks to see whether a particular constraint
has been satisfied. If it has not, the search space branches for each of the possible plan
"fixes" that will satisfy that constraint. Since the kinds of constraints that must be satisfied
are much broader than the pre- and postconditions used by other planners, the derivatiM
of constraint fixes is a nontrivial problem.

Highlights of the current system include a table-driven search mechanism that cai hw
adapted to specific domains, an efficient representation of world plans. facilities for pkil
explanation, and nonatomic-event expansion. Initial work has also begun on (ela ed hiiii,
of event parameters, on accumulating constraints on unbound variables, and on depni,.,,
directed search and backtracking.

Especially promising is current work on structuring and guiding the 'eart-l d h .'.

makes use of the domain structure itself. The planning space is partitt, i',, r ,
element/group structure of the domain and search througlh this partit ',,,,i
by the aforementioned table-driven mechanism, which is t~ilorable t,, ,h,, .
is a planning architecture that can generate plan., in a manner :
the specific application, ranging from looselv c i at, tih, . :

less tightly synchronized applications, to niore tivit .. .'
those applications in which synchrornizat im ul.rd1 t : ',,i.

Another useful result is an algorithni that r ,: ': .:

robot solution where n > viz. B.% izsine. thi- . izp : ' A .
generated and then rnade less parall. . -t, -

development to be applicable ti ii,\

world and wo shall be rpsi,rtm: -rt , .

%-



-RI2 724 ONE (OFFICE OF NAVAL RESEARCH) 
RESEARCH IN DISTRIUTED 

2/2
REASONING AND PLANNING(U) SRI INTERNATIONAL MENLO PARK
CR ARTIFICIAL INTELLIGENCE CENTE.. K 0 KONOLIGE ET AL.

UNCLASSIFIED MAY 97 N99914-8B5-C-0251 F/O 1/ ML



II~l IIIII

Pop~~111 1.0 _M~ WJML

MIRCP L2.

1111125 II1I'J. 11111.6

MICROCOPY RESOLUTION TEST CHARTt4ATIONAL BUREAU OF STANDARDS 963-A

q. 
w 

w 
w 

-

S%



,WflOWU~~K rnrn WX nN tV KflfX PIP% PflyNn tUXI FUWlS% 1W rig -J nX fiS ri. Tw prU a.R ... ... ~. a - ~ .

To satisfy violated constraints, we are currently using predefined fixes for common con-
straint forms. Because of the intractability of solving arbitrary first-order temporal-logic
constraints, we considered this to be a good initial approach to this problem. It is similar
to Chapman's idea of cognitive cliches - i.e., utilizing a set of specialized theories that are
common to many domains, rather than trying to solve for the most general theory [11].
A similar idea is incorporated in the ISIS system [26]. However, we are also working on
techniqes for deriving some fixes automatically from the logical form of a constraint, at
least for a subset of the logic. The synchronization techniques for solving propositional
temporal-logic constraints as conceived by Manna and Wolper [74] (and implemented by
Stuart [1111]) may eventually be applied.

Acknowledgments

I would like to thank Michael Georgeff for his critical reading of several drafts of this
paper as well as many enlightening discussions on multiagent-domain representation and
planning. Thanks also to David Fogelsong for his help in constructing GEMPLAN and for
his constructive comments in reviewing this paper.

Example: Restaurant Domain Specification

Restaurant Tables (of sizes 1 to 10)

RestaurantTable (size:INTEGER) = ELEMENT TYPE
EVENTS

Occupy(p:Party)
Vacate(p: Party)

CONSTRAINTS
1) Tables can be occupied by only one party at a time.

( Occupy(p) - Vacate(p) )-
END RestaurantTable

table[i=l..1O] = RestaurantTable(i) ELEMENT

Vehicles

Vehicle = ELEMENT TYPE
EVENTS
Occupy
Drive(Iocl,loc2: Location)
Vacate

CONSTRAINTS

98

""""



1) Vehicles can be occupied by only one passenger at a time.
( Occupy - Drive(locl,loc2) -- + Vacate )

END Vehicle

Taxi = Vehicle ELEMENT TYPE
taxi[l..51 = Taxi ELEMENT

Auto = Vehicle ELEMENT TYPE
autofl..15] = Auto ELEMENT

.1

I

9 9,--



Restaurant Lobby and Reservations

lobby = ELEMENT
EVENTS

Enter(f:Friend)
END lobby

reservations = ELEMENT
EVENTS

Reserve(p: Party, b:Bribe)
Seat(p:Party, t:RestaurantTable)

CONSTRAINTS
1) To be seated, there must be a reservation. Moreover, each reservation is

good for only one seating.
Reserve(p,b) -+ Seat(p,t)

2) Parties can only be seated at tables of the right size.
occur(seat) D seat.p.size = seat.t.size

3) A bigger bribe will get you seated faster.
reservel cbefore Seat A reserve2 cbefore Seat A reservel.b > reserve2.b D
0 1(3 seat2:Seat) reserve2-,,seat2 D (3 seatl:Seat) reservel-,-+seatl j

4) All other things being equal, seating is first-come-first-served.
reservel(pl,bl)=.reserve2(p2,b2) A bl=b2 A
present(pl) A present(p2) D
O [(3 seat2:Seat) reserve2-,+seat2 D (3 seatl:Seat) reservel-,.+seatl ] .

5) A $50 bribe will definitely get you seated.
reserve.b > $50 D 0 (3 seat:Seat) reserve--*seat

END reservations

where

present(p) (V f:Friend, fep) (3 enter(f ):Lobby. Enter)
enter(f) cbefore Reservations.Seat

100



The Friends

Friend=GRO UP TYPE (in: Movement, c: Communication,f: Food 0rderi ng, a:A uto)
CONSTRAI NTS
1) Each friend must sit and order before they can eat.

m.Sit --- c.OrderFood - c.Eat

2) If a friend is eating, they must still be sitting at a table.
justoccurred(c.eat) A m.sit"c.orderfood-.c.eat D
m.sit cbefore m.LeaveTable

3) To ride somewhere, a friend may use their own car.
m.Ride(Ioc1,Ioc2) -- a.Occupy -+ a.Drive(Iocl,Ioc2) -- * a.Vacate

4) To order food, a friend must first read the menu, choose a meal, and then
tell the waiter.

c.OrderFood f f.s.Read(menu) -. ftCosCod ~fs.Utter(food)

END Friend

Movement = ELEMENT TYPE
EVENTS

Ride(Iocl,Ioc2: Location)
Walk(Iocl,Ioc2: Location)
Sit(tableloc: Location)
LeaveTable(tableloc,Ioc: Location)

CONSTRAI NTS -

1) A friend must walk to a table before sitting there, and must be sitting there
before leaving.

Walk(Iocl,tableloc) -, Sit(tableloc) -~LeaveTable(tableloc,Ioc2)

2) To depart from a location x, a friend must first be there.
(V move(x,y):({Ride,Walk, LeaveTable}) Precondition(move(x,y), at(x))

at(x)=
(INIT at(x) A -1 (3 movej{Ride,Walk,LeaveTable}) occurred(move)) V
((3 move(z,x): {Ride,Walk, LeaveTable}) occurred(move(z,x)) A 4

-(3 move': {Ride,Walk, LeaveTable}) move(z,x)==*-move')
END Movement

101



Communication = ELEMENT TYPE
EVENTS

Reserve(p: Party, b:Bribe)
OrderFood(food: Foodstuff)
Eat

END Communication

FoodOrdering = GROUP TYPE (t:Thought, s:Speech, r:Sight, f:Order)
PO RTS(f. OrderFood', f.OrderFood")

Thought = ELEMENT TYPE
EVENTS

Choose(food: Foodstuff)
END Thought

Speech = ELEMENT TYPE
EVENTS

U tter(food: Foodstuff)
END Speech

Sight = ELEMENT TYPE
EVENTS

Read( menu: ReadingMaterial)
END Sight

Order = ELEMENT TYPE
EVENTS
Order Food '(food: Foodstuff)
OrderFood" (food: Foodstuff)
END Order -.7

102 I



comm[1..15] = Communication ELEMENT
move[1..15] = Movement ELEMENT 0
thought[1..15] = Thought ELEMENT "%
speech[1..15] = Speech ELEMENT
sight[!..15] = Sight ELEMENT
order[1..15] = Order ELEMENT
foodorder[i=1..15] = FoodOrder GROUP (thought[i],speech[i],sight[i],order[i])
auto[1..151 = Auto ELEMENT
friend[i=1..151 = Friend GROUP (comm[i],move[i],foodorder[i],auto[i])

The Parties

Party(size:INTEGER) =5

GROUP TYPE ({f}:SET OF Friend, reservations,lobby) WO
CONSTRAINTS b

1) (size must be the size of the set of friends) 4
size = setsize({f})

2) A reservation by a friend is identified with a reservation at the desk.
f.c.Reserve(p,b) ; reservations. Reserve(p,b)

3) All members of a party must be seated simultaneously.
(V f' c {f}) reservations.Seat(SELF,t) - f'.m.Sit(t)

4) In order to be seated, all members of the party must be present.
(V f' c {f}) lobby.Enter(f') -*reservations.Seat(S ELF,Table)

5) The first friend to enter the lobby must make a reservation. *.'

(V fl,f2 c {f}) occurred(Iobby.enterl(fl)) A
-,(3 Iobby.enter2(f2)) [Iobby.enter2(f2)== lobby.enterl(fl) ] D

0 (3 reservel:fl.c.Reserve(SELF,b)) occurred(reservel)
END Party

party[l] = GROUP ({friend[1. .31},reservations,lobby)
party[21 = GROUP ({friend[4..8]}, reservations, lobby)
party[3] = GROUP ({friend[9..15]} ,reservations,lobby) j

103

6'_



Felix

observations =ELEMENT

EVENTS
EmptyTable(t)

END observations

felixworld = GROUP (reservations, table[1..1OJ, lobby, observations)
P0 RTS(table~iJ.Vacate)

CONSTRAINTS
1) Felix must observe that a table is empty before he can seat a party there.

observations. EmptyTable(table[iI) - reservations. Seat( Party,ta ble[i])

2) Seating a party at a table is the same as occupying the table.
reservations. Seat(p,ta ble[iJ) ;t table[iJ.Occupy(p)

3) Felix must make correct observations about empty tables.

(V empty(t):observat ions. EmptyTable) Precondition(empty(t), Table Empty(t))

TableEmpty(table[i])
-(3 occupy:table[i]. Occupy) occurred(occupy) V

(3 vacate:table(i]. Vacate) vacate cbefore tablelil. Occupy

END felixworld

The Entire Restaurant Scenario

restaurantscenario = GROIJP(felixworld, party[1..3], taxi[1..51)
CONSTRAINTS

partybjJ.f.mn.Ride(Ioc1loc2)
taxi[iJ.Occupy - taxi [i]. D rive(Iocl1,Ioc2) -. taxi[i].Vacate

END restaurantscenario

104



.1

Chapter 6

EMBEDDED PLANNING
SYSTEMS FOR MULTIAGENT
DOMAINS

This work will appear in the proceedings of the AAAI Conference in Seattle, Washington
in August, 1987. It was written by Amy Lansky and Michael Georgeff.

A Introduction

The ability to act appropriately in dynamic environments is critical for the survival of all
living creatures. For lower life forms, it seems that sufficient capability is provided by
stimulus-response and feedback mechanisms. Higher life forms, however, must be able to
anticipate future events and situations, and form plans of action to achieve their goals.
The design of reasoning and planning systems that are embedded in the world and must
operate effectively under real-time constraints can thus be seen as fundamental to the
development of intelligent autonomous machines.

In this paper, we describe a system for reasoning about and performing complex tasks in
dynamic environments, and show how it can be applied to the control of an autonomous
mobile robot. The system, called a Procedural Reasoning System (PRS), is endowed with
the attitudes of belief, desire, and intention. At any given instant, the actions being
considered by PRS depend not only on its current desires or goals, but also on its beliefs
and previously formed intentions. PRS also has the ability to reason about its own
internal state - that is, to reflect upon its own beliefs, desires, and intentions, modifying
these as it chooses. This architecture allows PRS to reason about means and ends in much
the same way as do traditional planners, but provides the reactivity that is essential for
survival in highly dynamic and uncertain worlds. S

For our the task domain, we envisaged a robot in a space station, fulfilling the role of an
astronaut's assistant. When asked to get a wrench, for example. the robot determines

105



where the wrench is kept, plans a route to that location, and goes there. If the wrench is
not where expected, the robot may reason further about how to obtain information as to
its whereabouts. It then either returns to the astronaut with the desired tool or explains
why it could not be retrieved. In another scenario, the robot may be midway through the
task of retrieving the wrench when it notices a malfunction light for one of the jets in the
reactant control system of the space station. It reasons that handling this malfunction is a
higher-priority task than retrieving the wrench and therefore sets about diagnosing the
fault and correcting it. Having done this, it resumes its original task, finally telling the
astronaut.

To accomplish these tasks, the robot must not only be able to create and execute plans,
but must be willing to interrupt or abandon a plan when circumstances demand it.
Moreover, because the robot's world is continuously changing and other agents and
processes can issue demands at arbitrary times, performance of these tasks requires an
architecture that is both highly reactive and goal-directed.

We have used PRS with the new SRI robot, Flakey, to exhibit much of the behavior
described in the foregoing scenarios, including both the navigational and
malfunction-handling tasks [36]. In this paper, we concentrate on the navigational task;
the knowledge base used for jet malfunction handling is described elsewhere [34,35].

B Previous Approaches

Most existing architectures for embedded planning systems consist of a plan constructor
and a plan executor. As a rule, the plan constructor formulates an entire course of action
before commencing execution of the plan [25,114,116]. The plan itself is typically
composed of primitive actions - that is, actions that are directly performable by the
system. The rationale for this approach, of course, is to ensure that the planned sequence
of actions will actually achieve the prescribed goal. As the plan is executed, the system
performs these primitive actions by calling various low-level routines. Execution is usually
monitored to ensure that these routines will culminate in the desired effects; if they do

. not, the system can return control to the plan constructor so that it may modify the
existing plan appropriately.

One problem with these schemes is that, in many domains, much of the information about
how best to achieve a given goal is acquired during plan execution. For example, in
planning to get from home to the airport, the particular sequence of actions to be
performed depends on information acquired on the way - such as which turnoff to take,
which lane to get into, when to slow down or speed up, and so on. To overcome this
problem, at least in part, there has been some work on developing planning systems that
interleave plan formation and execution [18,20]. Such systems are better suited to
uncertain worlds than the kind of system described above, as decisions can be deferred
until they have to be made. The reason for deferring decisions is that an agent can acquire
more information as time passes; thus, the quality of its decisions can be expected only to
improve. Of course, because of the need to coordinate some activities in advance and
because of practical restrictions on the amount of decision-making that can be

106



accommodated during task execution, there are limitations on the degree to which such
decisions may be deferred.

Real-time constraints pose yet further problems for traditionally structured systems.
First, the planning techniques typically used by these systems are very time-consuming,
requiring exponential search through potentially enormous problem spaces. While this
may be acceptable in some situations, it is not suited to domains where replanning is
frequently necessary and where system viability depends on readiness to act.

In addition, most existing systems are overcommitted to the planning phase of their
operations; no matter what the situation or how urgent the need for action, these systems
always spend as much time as necessary to plan and reason about achieving a given goal
before performing any external actions whatsoever. They lack the ability to decide when
to stop planning or to reason about possible compromises between further planning and
longer available execution time. -

Traditional planning systems also rely excessively on constructing plans solely from
knowledge about the primitive actions performable by the robot. However, many plans
are not constructed from first principles, but have been acquired in a variety of other ways
- for example, by being told, by learning, or through training. Furthermore, these plans
may be very complex, involving a variety of control constructs (such as iteration and
recursion) that are normally not part of the repertoire of conventional planning systems.
Thus, although it is obviously desirable that an embedded system be capable of forming
plans from first principles, it is also important that the system possess a wealth of
precompiled procedural knowledge about how to function in the world [34].

The real-time constraints imposed by dynamic environments also require that a situated.:" .,
system be able to react quickly to environmental changes. This means that the system
should be able to notice critical changes in the environment within an appropriately small
interval of time. However, most embedded planning systems provide no mechanisms for
reacting in a timely manner to new situations or goals during plan execution, let alone
during plan formation.

Another disadvantage of most systems is that they commit themselves strongly to the
plans they have adopted. While such systems may be reactive in the limited sense of
being able to replan so as to accomplish fixed goals, they are unable to change their focus
completely and pursue new goals when the situation warrants. Indeed, the very survival of
an autonomous system may depend on its ability to modify its goals and intentions
according to the situation.

A number of systems developed for the control of robots do have a high degree of reactivity
[2]. Even SHAKEY [861 utilized reactive procedures (ILAs) to realize the primitive actions
of the high-level planner (STRIPS). This idea is pursued further in some recent work by
Nilsson [87]. Another approach is advocated by Brooks [9], who proposes decomposition of
the problem into task-achieving units whereby distinct behaviors of the robot are realized
separately, each making use of the robot's sensors, effectors, and reasoning capabilities as
needed. Kaelbling [49] proposes an interesting hybrid architecture based on similar ideas.

These kinds of architectures could lead to more viable and robust systems than the
traditional robot-control systems. Yet most of this work has not addressed the issues of

107

0

.~- . -.. . . .. . . . . . . . . . . . . .



general problem-solving and commonsense reasoning; the research is instead almost
exclusively devoted to problems of navigation and the execution of low-level actions.
These techniques have yet to be extended or integrated with systems that can change goal
priorities completely, modify, defer, or abandon its plans, and reason about what is best to
do in light of the immediate situation.

In sum, existing planning systems incorporate many useful techniques for constructing
plans of action in a great variety of domains. However, most approaches to embedding
these planners in dynamic environments are not robust enough nor sufficiently reactive to
be useful in many real-world applications. On the other hand, the more reactive systems
developed in robotics are well suited to handling the low-level sensor and effector activities
of a robot. Nevertheless, it is not yet clear how these techniques could be used for
performing some of the higher-level reasoning desired of complex problem-solving systems.
To reconcile these two extremes, it is necessary to develop reactive reasoning and planning
systems that can utilize both kinds of capabilities whenever they are needed.

C A Reactive Planning System

The system we used for controlling and carrying out the high-level reasoning of the robot
is called a Procedural Reasoning System (PRS) [34,35]. The system consists of a data base
containing current beliefs or facts about the world, a set of current goals or desires to be
realized, a set of procedures (which, for historical reasons, are called knowledge areas or
KAs) describing how certain sequences of actions and tests may be performed to achieve
given goals or to react to particular situations, and an interpreter (or inference
mechanism) for manipulating these components. At any moment, the system will also
have a process stack (containing all currently active KAs) which can be viewed as the
system's current intentions for achieving its goals or reacting to some observed situation.
The basic structure of PRS is shown in Figure 6.1. A brief description of each component
and its usage is given below.

C.1 The System Data Base

The contents of the PRS data base may be viewed as representing the current beliefs of
the system. Some of these beliefs may be provided initially by the system user. Typically,
these will include facts about static properties of the application domain - for example,
the structure of some subsystem, or the physical laws that some mechanical components
must obey. Other beliefs are derived by PRS itself as it executes its KAs. These will
typically be current observations about the world or conclusions derived by the system
from these observations.

The data base itself consists of a set of state descriptions describing what is believed to be
true at the current instant of time. We use first-order predicate calculus for the state
description language. Data base queries are handled using unification over the set of data
base facts. State descriptions that describe internal system states are called metalevel

108

# J'" ", "f -" ", *" "" - 9""° "" ."" . .° -. " ° " - . " " , b . . ..' . . ". . .-" . °- "-" ". •" " , -' " ° " ° • " " t •"j "



DAT

OUPUT G MONITORNPUT]

(B921 IFS) (PLANS)

SYSTEM ~~ INEPEE
[INTERFACES (REASONER) 

NVIRONMENT

(DESRES)I(INTENTIONS) 
/o

OUTPUT " -GENERATORI

Figure 6.1: System Structure

expressions. The basic metalevel predicates and functions are predefined by the system.
For example, the metalevel expression (goal g) is true if g is a current goal of the system.

C.2 Goals

Goals appear both on the system goal stack and in the representation of KAs. Unlike
most AI planning systems, PRS goals represent desired behaviors of the system, rather
than static world states that are to be [eventually] achieved. Hence goals are expressed as
conditions on some interval of time (i.e., on some sequence of world states).

Goal behaviors may be described in two ways. One is to apply a temporal predicate to an
n-tuple of terms. Each temporal predicate denotes an action type or a set of state
sequences. That is, an expression like "(walk a b)" can be considered to denote the set
of state sequences which embody walking actions from point a to b.

A behavior description can also be formed by applying a temporal operatcr to a state
description. Three temporal operators are currently used. The expression (p), where p is
some state description (possibly involving logical connectives), is true of a sequence of
states if p is true of the last state in the sequence; that is, it denotes those behaviors that
achieve p. Thus we might use the behavior description (! (walked a b)) rather than
(walk a b). Similarly, (?p) is true if p is true of the first state in the sequence - that is,
it can be considered to denote those behaviors that result from a successful test for p.
Finally, (Sp) is true if p is preserved (maintained invariant) throughout the sequence.
Behavior descriptions can be combined using the logical operators A and V. These denote.
respectively, the intersection and union of the composite behaviors.

109

e A



As with state descriptions, behavior descriptions are not restricted to describing the
external environment, but can also be used to describe the internal behavior of the
system. Such behavior specifications are called metalevel behavior specifications. One
important metalevel behavior is described by an expression of the form (=> p). This
specifies a behavior that places the state description p in the system data base. Another
way of describing this behavior might be (! (belief p)).

C.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to certain situations is
represented in PRS by declarative procedure specifications called Knowledge Areas (I(As).
Each KA consists of a body, which describes the steps of the procedure, and an invocation
condition that specifies under what situations the KA is useful.

The body of a KA is represented as a graphic network and can be viewed as a plan or
plan schema. However, it differs in a very important way from the plans produced by
most AI planners: it does not consist of possible sequences of primitive actions, but rather
of possible sequences of subgoals to be achieved. Thus, the bodies of KAs are much more
like the high-level "operators" used in traditional planning systems [116]. They differ in
that (1) the subgoals appearing in the body can be described by complex temporal
expressions and (2) the allowed control constructs are richer and include conditionals,
loops, and recursion.

The invocation part of a KA contains an arbitrarily complex logical expression describing
under what conditions the KA is useful. Usually this consists of some conditions on
current system goals (in which case, the KA is invoked in a goal-directed fashion) or
current system beliefs (resulting in data-directed or reactive invocation), and may involve
both. Together the invocation condition and body of a KA express a declarative fact
about the effects of performing certain sequences of actions under certain conditions.

The set of KAs in a PRS application system not only consists of procedural knowledge
about a specific domain, but also includes metalevel KAs - that is, information about the
manipulation of the beliefs, desires, and intentions of PRS itself. For example, typical
metalevel KAs encode various methods for choosing among multiple relevant KAs,
determining how to achieve a conjunction of goals, and computing the amount of
additional reasoning that can be undertaken, given the real-time constraints of the
problem domain. Metalevel KAs may of course utilize knowledge specifically related to the
problem domain. In addition to user-supplied KAs, each PRS application contains a set of
system-defined default KAs. These are typically domain-independent metalevel KAs.

C.4 The System Interpreter

The PRS interpreter runs the entire system. From a conceptual standpoint, it operates in
a relatively simple way. At any particular time, certain goals are active in the system and
certain beliefs are held in the system data base. Given these extant goals and beliefs, a

110



subset of KAs in the system will be relevant (i.e., applicable). One of these relevant KAs
will then be chosen for execution by placing it on the process stack.

In the course of executing the chosen KA, new subgoals will be posted and new beliefs
derived. When new goals are pushed onto the goal stack, the interpreter checks to see if
any new KAs are relevant, chooses one, places it on the process stack, and begins
executing it. Likewise, whenever a new belief is added to the data base, the interpreter
will perform appropriate consistency maintenance procedures and possibly activate other
relevant KAs. During this process, various metalevel KAs may also be called upon to
make choices among alternative paths of execution, choose among multiple applicable
KAs, decompose composite goals into achievable components, and make other decisions.

This results in an interleaving of plan selection, formation, and execution. In essence, the
system forms a partial overall plan, determines a means of accomplishing the first subgoal
of the plan, acts on this, further expands the near-term plan of action, executes further.
and so on. At any time, the plans the system is intending to execute (i.e., the selected
KAs) are both partial and hierarchical - that is, while certain general goals have been
decided upon, the specific means for achieving these ends have been left open for future
deliberation.

Unless some new fact or request activates some new KA, PRS will try to fulfill any
intentions it has previously decided upon. But if some important new fact or request does
become known, PRS will reassess its goals and intentions, and then perhaps choose to
work on something else. Thus, not all options that are considered by PRS arise as a result
of means-end reasoning. Changes in the environment may lead to changes in the system's
beliefs, which in turn may result in the consideration of new plans that are not means to
any already intended end. PRS is therefore able to change its focus completely and pursue
new goals when the situation warrants it. PRS can even alter its intentions regarding its
own reasoning processes - for example, it may decide that, given the current situation, it
has no time for further reasoning and so must act immediately.

C.5 Multiple Asynchronous PRSs

In some applications, it is necessary to monitor and process many sources of information
at the same time. Because of this, PRS was designed to allow several instantiations of the
basic system to run in parallel. Each PRS instantiation has its own data base, goals, and
KAs, and operates asynchronously relative to other PRS instantiations, communicating
with them by sending messages. The messages are written into the data base of the
receiving PRS, which must then decide what to do, if anything, with the new information.
As a rule, this decision is made by a fact-invoked KA (in the receiving PRS), which
responds upon receipt of the external message. In accordance with such factors as the
reliability of the sender, the type of message, and the beliefs, goals, and current intentions
of the receiver, it is determined what to do about the message - for example, to acquire a
new belief, establish a new goal, or modify intentions.

.5

111 ..-

5-

.7.



C? (IL (offlce 9person Stroom) (in-hall Stroom Ithall Stside StPOS) "
NI (in-wing Sthall Stwing))

(? (I (robot-in-room SIfrom) (in-hall Srroom thall Sfside Sfpos)))

N2
(.,% (destination Stroom Stholl Stwin))

N3

(I (vocalized 'Just a moment, I'm planning My path.'))

Nd

(I (planned-path Sthall Strom))

AN

O! (room-left Sfroom))

0 (followed-Plan))

it

Figure 6.2: The Top-Level Strategy

D The Domain Knowledge

The scenario described in the introduction includes problems of route planning, navigation
to maintain the route, and such tasks as malfunction handling and requests for
information. We shall concentrate herein on the tasks of route planning and navigation.
However, it is important to realize that the knowledge representation provided by PRS is
used for reasoning about all tasks performed by the system.

The way the robot (under the control of PRS) solves the tasks of the space station
scenario is roughly as follows. To reach a particular destination, it knows that it must first
plan a route and then navigate to the desired location (see the KA depicted in Figure 6.2).
In planning the route, the robot uses knowledge of the station's topology to work out a
path to the target location, as is typically done in navigational tasks for autonomous
robots. The topological knowledge is not detailed, stating simply which rooms are in
which corridors and how the latter are connected. The route plan formed by the robot is
also high-level, typically having the following form: "Travel to the end of the corridor,
turn right, then go to the third room on the left." The robot's knowledge of the problem
domain's topology is stored in its data base, while its knowledge of how to plan a route is
represented in various route-planning KAs. Throughout this predictive-planning stage, the
robot remains continuously reactive. Thus, for example, should the robot notice indication

112

.



of a jet failure on the space station, it may well decide to interrupt its route planning and
attend instead to the task of remedying the jet problem.
Once a plan is formed by lhe route-planning KAs, that plan must be used to guide the

activities of the robot. To achieve this, we defined a group of KAs that react to the
presence of a plan (in the data base) by translating it into the appropriate sequence of
subgoals. Each leg of the original route plan generates subgoals - such as turning a
corner, travelling along the hallway, and updating the data base to indicate progress. Th
second group of navigational KAs reacts to these goals by actually doing the work of
reading the sonars, interpreting the readings, counting doorways, aligning the robot in the
hallway, and watching for obstacles up ahead.

( (M (moved 8) (speed (maxv)) (acceleration (max)D)

NO

UI (at-coords 0 ))
NI .

O (at-de-beerins 180))
N2

( (moved (. (elbowroom) (wheelbase))))

N3

(- C (robot-in-room Sfroom)))

N4

C? (in-hall Sfroom SMhall Sside Spoe))

NS

(=> (coming-from $side))

No

(.. (current-origin Sfroom $fhall))

and

1PWOCATIO-PA B(GM--RO-F ROM

Figure 6.3: Route Navigation KA

For example, let us consider the KAs in Figures 6.3 and 6.4. After having used the KA in
Figure 6.2 to plan a path, the robot acquires the goal (! (room-left $froom)), where the
variable $f room is bound to some particular constant representing the room that the
robot is trying to leave. The KA in Figure 6.3 will respond, causing the robot to perform
the steps for leaving the given room. The last step in this KA will insert a fact into the
system data base of the form (current-origin $froom $f hall), where the variables are %
again bound to specific constants. Next, the KA in Figure 6.2 issues the command
(! (follow-plan)). This activates the KA in Figure 6.4, which assures that each leg of
the plan is followed until the goal destination is reached. Beliefs of the form

113 - C

A2,5o.



(? (destinatio Strom Othll Stpine))

(? (wruout-oriin sloml1e sipoe))

NZ 0 $h l 1) (a Strowm 8tpot))))

a (fell W as::t,|))

?U stheII Sll caleXo Strom Sapot)))

Figure 6.4: Plan Interpretation KA

(current-origin $locale Sepot) are repeatedly updated to readjust the robot's
bearings and knowledge about its whereabouts.

A third group of KAs reacts to contingencies encountered by the robot as it interprets and
follows its path. These will include KAs that respond to the presence of an obstacle ahead
or the fact that an emergency light has been seen. Such reactive KAs are invoked solely
on the basis of certain facts' becoming known to the robot. Implicit in their invocation,
however, is an underlying goal to "avoid obstacles" or "remain safe."

Yet other KAs perform the various other tasks required of the robot [35). Metalevel KAs
choose among different means of realizing any given goal and determine the respective
priority of tasks when mutually inconsistent goals arise (such as diagnosing a jet failure
and fetching a wrench). Each KA manifests a self-contained behavior, possibly including
both sensory and effector components. Many of these KAs can be simultaneously active,
performing their function whenever they may be applicable. Thus, while trying to follow a
path down a hallway, an obstacle avoidance procedure may simultaneously cause the robot
to veer from its original path. We elsewhere provide a more detailed description of the
KAs used by the robot [36].

E Discussion

The system as described here was implemented using the new SRI robot, Flakey, to
accomplish much of the two scenarios described in the introduction. In particular, the
robot managed to plan a path to the target room, maneuver its way out of the room in
which it was stationed, and navigate to its destination via a variety of hallways,

114

%. %
3%



intersections, and corners. It maintained alignment in the hallways, avoided obstacles, and
stopped whenever its path was completely blocked. If it noticed a jet malfunction on the
space station (simulated by human interaction via the keyboard), it would interrupt
whatever it was doing (route planning, navigating the hallways, etc.) and attend to
diagnosing the problem. The diagnosis performed by the robot was quite complex and
followed actual procedures used for NASA's space shuttle [35].

The features of PRS that, we believe, contributed most to this success were (1) its partial
planning strategy, (2) its reactivity, (3) its use of procedural knowledge, and (4) its
metalevel (reflective) capabilities. The partial hierarchical planning strategy and the
reflective reasoning capabilities of PRS proved to be well suited to the robot application.
yet still allowed the system to plan ahead when necessary. By finding and executing
relevant procedures only when sufficient information was available, the system stood a
better chance of achieving its goals under the stringent real-time constraints of the
domain. For example, the method for determining the robot's course was dynamically
influenced by the situation, such as whether the robot was between two hallway walls,
adjacent to an open door, at a T-intersection, or passing an unknown obstacle. A

Because PRS expands plans dynamically and incrementally, there were also frequent
opportunities for it to react to new situations and changing goals. For example, when the
system noticed a jet-fail alarm while it was attempting to fetch a wrench, it had the
ability to reason about the priorities of these tasks and, if it so decided, to suspend the
wrench-fetching task while it attended to the jet failure. Indeed, the system even
continued to monitor the world while it was planning its route and could interrupt the ..-

planning whenever the situation demanded.

The wealth of procedural knowledge possessed by the system was also critical in allowing
the robot to operate effectively in real-time and to perform a variety of very complex
tasks. In particular, the powerful control constructs allowed in KAs (such as conditionals,
loops, and recursion) proved highly advantageous. PRS also makes it possible to have a
large number of diverse KAs available for achieving a goal. Each may vary in its ability to
accomplish a goal, as well as in its applicability in particular situations. Thus, if there is
insufficient information about a given situation to allow one KA to be used, another
(perhaps one less reliable) might be available instead. Parallelism and reactivity also
helped in providing robustness. For example, if one PRS instantiation were busy planning
a route, other instantiations could remain active, monitoring environmental changes,
keeping the robot in a stable configuration, and avoiding dangers. This has much in
common with, and yields the same advantages as, the vertical robot architecture proposed
by Brooks [9].

The metalevel reasoning capabilities of PRS were particularly important in managing the
application of the various KAs in different situations. Such capabilities can be critical in
deciding how best to meet the real-time constraints of a domain. However, the current
system was really too simple to serve as an adequate test of the system's metalevel
reasoning abilities; indeed, the system performed quite well with only a few [well-chosen]
metalevel KAs.

Despite these encouraging results, the research is only in its initial stages and there are a

115

JZ 10



SI.
S,

S.

RAPm

number of limitations that still need to be addressed. First, there are many assumptions
behind the procedures (KAs) used. For example, we have assumed that hallways are
straight and corners rectangular and that all doors are open and unobstructed. A greater
variety of KAs and increased parallelism would also have been preferable, allowing the
robot to perform its tasks under more demanding conditions. For example, we could have
included many additional low-level procedures for, say, avoiding dangers and exploring the
surroundings. Finally, PRS does not reason about other subsystems (i.e., other PRS
instantiations) in any but the simplest ways. However, the message-passing mechanisms
we have employed should allow us to integrate more complex reasoning about interprocess
communication.

Acknowledgments

Marcel Schoppers carried out the experiment described here. Pierre Bessiere, Joshua
Singer, and Mabry Tyson helped in the development of PRS. Stan Reifel and Sandy Wells
designed Flakey and its interfaces, and assisted with the implementation described herein.
We have also benefited from our participation and interactions with members of CSLI's
Rational Agency Group (RATAG), particularly Michael Bratman, Phil Cohen, Kurt
Konolige, David Israel, and Martha Pollack. Leslie Pack Kaelbling, Stan Rosenschein. and .
Dave Wilkins also provided helpful advice and interesting comments.

.3

'I

..

1%

116

%.*. % % ~ **% -.. .* S V V., s'"5 %



Bibliography

[1] Abadi, M. and Manna, Z. (1985). Nonclausal temporal deduction. Report
No. STAN-CS-85-1056, Computer Science Department, Stanford University,
Stanford, California.

[2] J. S. Albus. Brains, Behavior, and Robotics. McGraw-Hill, Peterborough, New
Hampshire, 1981.

[3] Allen, J. F., "Towards a General Theory of Action and Time," Artificial
Intelligence, 23, pp. 123-154 (1984).

[4] Allen, J. F. Recognizing Intentions from Natural Language Utterances,
pages 107-166. MIT Press, Cambridge, Massachusetts, 1983.

[5] Allen, J.F. and J.A.Koomen, "Planning Using a Temporal World Model," IJCAI-83,
Proceedings of the Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany, pp. 741-747 (August 1983).

[6] Appelt, D. (1985). Planning English sentences. Cambridge University Press,
Cambridge, U. K.

[7] Barringer, H. and R. Kuiper, "Hierarchical Development of Concurrent Systems in a
Temporal Logic Framework," Proceedings of the NSF/SERC Seminar on
Concurrency, Carnegie Mellon University, Pittsburgh, Pennsylvania (July 1984).

[8] Bratman, M., Intention, Plans, and Practical Reason, Harvard University Press,
Cambridge, Massachusetts, forthcoming.

[9] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. Technical
Report 864, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1985.

[10] Chapman,D. "Cognitive Cliches," AI Working Paper 286, MIT Laboratory for
Artificial Intelligence, Cambridge, Massachusetts (April 1986).

[11] Chapman, D. "Planning for Conjunctive Goals," Masters Thesis, Technical Report
MIT-AI-TR-802, MIT Laboratory for Artificial Intelligence, Cambridge,
Massachusetts (1985).

117

" ,



[12] Cheeseman, P. "A Representation of Time for Automatic Planning," Proceedings of

the IEEE International Conference on Robotics, Atlanta, Georgia (March 1984).

[13] Cohen, P. R. and Perrault, C. R. (1979). Elements of a plan-based theory of speech
acts. Cognitive Science 3, pp. 177-212.

[14] Cohen, P. and Levesque, H. Persistence, intention, and commitment. In Proceedings
of the Workshop on Planning and Reasoning about Action, Timberline, Oregon,
Morgan Kaufmann, 1986.

[15] Cohen, P. R. and Levesque, H. J. Speech acts and the recognition of shared plans.
In Proceedings of the Third Biennial Conference, pages 263-271, Canadian Society l
for Computational Studies of Intelligence, 1980.

[16] Cohen, P. R. and H. J. Levesque, 'Speech Acts and the Recognition of Shared
Plans," Proceedings of the Twenty Third Conference of the Association for
Computational Linguistics, Stanford, California (1985). '4

[17] Davidson, D. Essays on Actions and Events, Clarendon Press, Oxford, England
(1980).

[18] P.R. Davis and R.T. Chien. Using and reusing partial plans. In Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, page 494, Cambridge,
Massachussets, 1977.

[19] Dean, T., "Planning and Temporal Reasoning under Uncertainty," Proceedings of
the IEEE Workshop on Knowledge Based Systems, Denver, Colorado (1984).

[201 E. H. Durfee and V. R. Lesser. Incremental planning to control a blackboard-based
problem solver. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 58-64, Philadelphia, Pennsylvania, 1986.

[21] Etherington, D. W. Reasoning with Incomplete Information: Investigations of
Non-Monotonic Reasoning. PhD thesis, University of British Columbia, Vancouver,
British Columbia, 1986. -'

[22] Fahlman, S. E. NETL: A System For Representaing and Using Real- World
Knowledge. MIT Press, Cambridge, Massachusetts, 1981.

[23] Fagin, R. and Halpern, J. Y. (1985). Belief, awareness, and limited reasoning. In
Proceedings of the Ninth International Joint Conference on Al, Los Angeles,
California, pp. 491-501.

[24] Farifias-del-Cerro, L. (1983). Temporal reasoning and termination of programs. In
Proceedings of the Eighth International Joint Conf,'rence on Artificial Intelligence,
Karlsruhe, West Germany, pp. 926-929.

118



[25] Fikes, R. E., and Nilsson, N. J., "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving," Artificial Intelligence, 2, pp. 189 - 208
(1971).

[26] Fox, M.S. and Smith, S.F. "ISIS - A Knowledge-Based System for Factory
Scheduling," Expert Systems, the International Journal of Knowledge Engineering.
Volume 1, Number 1, pp. 25-49 (July 1984).

[271 Geissler, C. and Konolige, K. (1986). Implementation of a resolution system for
modal logic. Forthcoming Artificial Intelligence Center Tech Note, SRI
International, Menlo Park, California.

[28] Georgeff, M. P. "Communication and Interaction in Mulitagent Planning,"
Proceedings of the Third National Conference on Artificial Intelligence, Washington.
D.C. (1983).

[291 Georgeff, M. P., "A Theory of Action for Multiagent Planning," Proceedings of the
Fourth National Conference on Artificial Intelligence, Austin, Texas (1984).

[301 Georgeff, M. P., "Reasoning about Procedural Knowledge," Proceedings of the
AIAA/
ACMINASAIIEEE Computers in Aerospace Conference, Long Beach, California

(1985).

[31] Georgeff, M. P., "Actions, Processes, and Causality," Artificial Intelligence Center
Technical Note, SRI International, Menlo Park, California (1986).

[32] Georgeff, M. P., "A Representation of Events in Multiagent Domains," Proceedings
of the Fifth National Conference on Artificial Intelligence, Philadelphia,
Pennsylvania (1987).

[33] Georgeff, M. P., "Many Agents are Better than One," Forthcoming SRI Technical
Note, Artificial Intelligence Center, SRI International, Menlo Park, California.
(1987).

[34] Georgeff, M. P., and Lansky, A. L., "Procedural Knowledge," Proc. IEEE, Special
Issue on Knowledge Representation (1986).

[35] M. P. Georgeff and A. L. Lansky. A System for Reasoning in Dynamic Domains:
Fault Diagnosis on the Space Shuttle. Technical Note 375, Artificial Intelligence
Center, SRI International, Menlo Park, California, 1986.

[36] M. P. Georgeff, A. L. Lansky, and M. Schoppers. Reasoning and Planning in
Dynamic Domains: An Experiment with a Mobile Robot. Technical Note 380,
Artificial Intelligence Center, SRI International, Menlo Park, California, 1987.

[37] Grosz, B. J. (1981). Focusing and description in natural language dialogues. In
Elements of Discourse Understanding, Cambridge University Press, Joshi, A. K..
Webber. B, and Sag, I., Eds.

119 I
.5 ' 5* .1*~ .,P. ' .. .' . '



[38] Halpern, J. Y. and Moses, Y. (1984). Knowledge and common knowledge in a
distributed environment. In Proceedings of the 3rd ACM Conference on Principles
of Distributed Computing, pp. 50-61.

[391 Halpern, J. Y. and Moses, Y. (1985). A guide to the modal logics of knowledge and
belief: preliminary draft. In Proceedings of the Ninth International Joint Conference
on Al, Los Angeles, California, pp. 479-490.

[401 Hanks, S., and McDermott, D., "Default Reasoning, Nonmonotonic Logics, and the
Frame Problem," Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, Pennsylvania (1986).

[41] Harel, D. First Order Dynamic Logic, Lecture Notes in Computer Science, 68,
Springer-Verlag (1979).

[42] Hayes, P. J., "The Frame Problem and Related Problems in Artificial Intelligence,"
in Artificial and Human Thinking, A. Elithorn and D. Jones (eds.), Jossey-Bass
(1973).

[43] Hewitt, C. and H. Baker Jr. "Laws for Communicating Parallel Processes," IFIP 77,
B.Gilchrist,ed., pp. 987-992, North-Holland, Amsterdam, Holland (1977).

[44] Hintikka, J. (1962). Knowledge and Belief. Cornell University Press, Ithaca, New
York.

[45] Hintikka, J. (1969). Semantics for propositional attitudes. In L. Linsky (ed.),
Reference and Modality, Oxford University Press, London (1971), pp. 145-167.

[46] Hintikka, J. Impossible possible worlds vindicated. Journal of Philosophical Logic,
4:475-484, 1975.

[47] Hoare, C. A. R., Communicating Sequential Processes, Series in Computer Science,
C. A. R. Hoare (ed.), Prentice Hall, Englewood Cliffs, New Jersey (1985).

[48] Imielinski, T. Results on translating defaults to circumscription. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 114-120, Los
Angeles, 1985.

[49] L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop, Morgan Kaufmann, Los
Altos, California, 1987.

[50] Konolige, K. (1980). A first-order formalization of knowledge and action for a
multiagent planning system. Artificial Intelligence Center Tech Note 232, SRI
International, Menlo Park, California.

[51] Konolige, K. (1984). A deduction model of belief and its Logics. Doctoral
dissertation, Stanford University, Stanford, California.

120

- • - - - • ,t . . - ' . . • , - • . - . , . - . • - .- ., % . . . - .- % - . - - - - - .- °. . - . - - .- ° - .. • .. -° .. D- - - * . " .



[52] Konolige, K. Experimental Robot Psychology. Technical Note 363, SRI Artificial
Intelligence Center, Menlo Park, California, 1985.

[53] Konolige, K. (1986). Resolution methods for quantified modal logics. Forthcoming
Artificial Intelligence Center Tech Note, SRI International, Menlo Park, California.

[54] Konolige, K. On the relation between default logic and autoepistemic theories.
1987. submitted to IJCAI87.

[55] Konolige, K. and Myers, K. Representing defaults with epistemic concepts. 1987.
submitted to AAAI87.

[56] Kripke, S. A. (1959). A Completeness Theorem in Modal Logic. Journal of Symbolic
Logic 24, pp. 1-14.

[57] Kuo, V. (1984). A formal natural deduction system about knowledge: modal logic
W-JS. Unpublished manuscript, Stanford University.

[58] Ladkin, P. "Comments on the Representation of Time," in Proceedings of 1985
Workshop on Distributed Artificial Intelligence, Sea Ranch, California, pp. 137-158
(1985).

[59] Lamport, L. "Times, Clocks, and the Ordering of Events in a Distributed System,"
Communications of the ACM Vol. 21, No. 7, pp. 558-565 (July 1978).

[60] Langlotz, C. Siglunch talk. February, 1987. Stanford University.

[61] Lansky, A. L., "A Representation of Parallel Activity Based on Events, Structure,
and Causality," Proceedings of the 1986 Workshop on Reasoning about Actions and
Plans, Timberline Lodge, Timberline, Oregon (1987).

[62] Lansky, A.L. "GEMPLAN: Event-based Planning Through Temporal Logic
Constraint Satisfaction," Forthcoming Working Paper, Artificial Intelligence Center,
SRI International, Menlo Park, California (1987).

[63] Lansky, A.L. "Behavioral Specification and Planning for Multiagent Domains,"
Technical Note 360, Artificial Intelligence Center, SRI International, Menlo Park,
California (1985).

[64] Lansky, A.L. "A 'Behavioral' Approach to Multiagent Domains," in Proceedings of
1985 Workshop on Distributed Artificial Intelligence, Sea Ranch, California, pp.

bo 159-183 (1985).

[65] Lansky, A.L. "Specification and Analysis of Concurrency," Ph.D. Thesis, Technical
Report STAN-CS-83-993, Department of Computer Science, Stanford University.
Stanford, California (December 1983).

[66] Lansky, A.L. and S.S.Owicki, "GEM: A Tool for Concurrency Specification and
Verification," Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing, pp.198-212 (August 1983).

121

% _N 2.



[67] Levesque, H. J. (1982). A Formal Treatment of Incomplete Knowledge Bases.
FLAIR Technical Report No. 614, Fairchild Laboratories, Palo Alto, California.

[68] Levesque, H. J. (1984). A logic of implicit and explicit belief. In Proceedings of the
National Conference on Artificial Intelligence, Houston, Texas, pp. 198-202.

[69] Lifschitz, V. "Circumscription in the Blocks World," Computer Science Working ,
Memo, Stanford University, Stanford, California (1985).

[70] Lifschitz, V. "On the Semantics of STRIPS," Proceedings of the 1986 Workshop on
Reasoning about Actions and Plans, Timberline Lodge, Timberline, Oregon (1987).

[71] Litman, D. Plan Recognition and Discourse Analysis. PhD thesis, University of
Rochester, Rochester, New York, 1985.

[72] Lukaszewicz, W. Two results on default logic. In Proceedings of the American"
Association of Artificial Intelligence, pages 459-461, University of California at Los,
Angeles, 1985.

[73] Manna, Z., and Waldinger, R. W., "A Theory of Plans," Proceedings of the 1986
Workshop on Reasoning about Actions and Plans, Timberline Lodge, Timberlinie.
Oregon (1987).

[74] Manna, Z. and P.Wolper, "Synthesis of Communicating Processes from Temporal
Logic Specifications," ACM Transactions on Programming Languages and Sy.,t r,.
6 (1), pp. 6 8 -9 3 (January 1984).

[75] McCarthy, J. Applications of circumscription to formalize common sense knowledgie.
In Proceedings of the Workshop on Non-Monotonic Reasoning, American
Association for Artificial Intelligence, Menlo Park, California, 1984.

[76] McCarthy, J. Circumscription - a form of nonmonotonic reasoning. Artificial
Intelligence, 13(1-2), 1980.

[77] McCarthy, J. et. al. (1978). On the model theory of knowledge. Memo AIM-312.
Stanford University, Stanford.

[78] McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the %

standpoint of Artificial Intelligence. In Machine Intelligence 4, B. Meltzer and
D. Michie editors, Edinburgh University Press, Edinburgh, Scotland, pp. 120-1-17.

[791 McDermott, D. and Doyle, J. Non-monotonic logic I. Artificial Intelligctic,
13(1-2):41-72, 1980.

[80] McDermott, D., "A Temporal Logic for Reasoning about Processes and Plans,"
Cognitive Science, 6, pp. 101-155 (1982).

[81] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer
Science 92, Springer Verlag, New York (1980).

122

S

• w""" ,% .
T

o"•- ° P o "' d "° o°"" " .* ""° " J'J ,"- o - ------'J. P o"-'.,-- ° '-"" - " o ' ' ' . ""



[82] Minsky, M. A framework for representing knowledge. In Winston, P., editor. Thc
Psychology of Computer Vision, McGraw-Hill, New York, 1975.

[83] Moore, R. C. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1), 1985.

[84] Moore, R. C. (1980). Reasoning about knowledge and action. Artificial Intelligence
Center Technical Note 191, SRI International, Menlo Park, California.

[85] Nilsson, N. Principles of Artificial Intelligence, Tioga Publishing Company, Palo
Alto, California (1980).

[86] N. J. Nilsson. Shakey the Robot. Technical Note 323, Artificial Intelligence Center,
SRI International, Menlo Park, California, 1984.

[87] N. J. Nilsson. Triangle Tables: A Proposal for a Robot Programming Language.
Technical Note 347, Artificial Intelligence Center, SRI International, Menlo Park,
California, 1985.

[88] Owicki, S. and L.Lamport, "Proving Liveness Properties of Concurrent Programs,"
ACM TOPLAS 4, 3, pp. 4 5 5 -4 9 2 (July 1982).

[89] Pednault, E. P. D., "Toward a Mathematical Theory of Plan Synthesis," Ph.D.
thesis, Department of Electrical Engineering, Stanford University, Stanford,
California (1986).

[90] Pednault, E. P. D., "Solving Multiagent Dynamic World Problems in the Classical
Planning Framework," Proceedings of the 1986 Workshop on Reasoning about
Actions and Plans, Timberline Lodge, Timberline, Oregon (1987).

[91] Pelavin, R., "A Formal Logic for Planning with a Partial Description of the Future,"
Ph.D. Thesis, Department of Computer Science, University of Rochester, Rochester.,
New York (1986).

[92] Pollack, M. E. A model of plan inference that distinguishes between the beliefs of
actors and observers. In Proceedings of the Workshop on Planning and Reasoning
about Action, pages 217-233, Timberline, Oregon, 1986.

[93] Pollock, J. L. Knowledge and Justification. Princeton University Press, Princeton,

New Jersey, 1975.

[94] Reiter, R. A logic for default reasoning. Artificial Intelligence, 13(1-2). 1980.

[95] Reiter, R. aii Criscuolo, G. Some representational issues in default reasoning. In
Cercone, N. J., editor, Computational Linguistics, pages 15-27. Pergamon Press.
Elmsford. New York, 1983.

,96] Robinson, .J. A. (1965). A machine-oriented logic based on the resolution principle.
J. Assoc. Comput. Mach. 12, pp. 23-41.

123

! *' % % *' % t ° *% t* % ' . ,% * * * " " "*"' " . % " " " ° " % '* - * " -" ,"% " ,, .""*""" - . "* . """* ,"% ". .""' ""%"" "0



[97] Robinson, J. A. Logic: Form and Function. Elsevier North Holland, New York,
1979.

[98] Rosenschein, J. S., and Genersereth, M. R. (1984). Communication and cooperation.
Heuristic Programming Project Report 84-5, Stanford University, Stanford,
California.

[99] Rosenschein, S. J., "Plan Synthesis: A Logical Perspective," Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancouver, British
Columbia (1981).

[10G] Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier, North Holland
Publishing Company, New York, New York (1977).

[101] Sato, M. (1976). A study of Kripke-type models for some modal logics by Gentzen's
sequential method. Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, Japan.

[102] Shoham, Y. and Dean, T., "Temporal Notation and Causal Terminology," Working
Paper, Department of Computer Science, Yale University, New Haven, Connecticut
(1985).

[103] Shoham, Y. "Chronological Ignorance: Time, Nonmonotonicity, Necessity and
Causal Theories," Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, Pennsylvania (1986).

[104] Shoham, Y. "What is the Frame Problem," Proceedings of the 1986 Workshop on
Reasoning about Actions and Plans, Timberline Lodge, Timberline, Oregon (1987).

[105] Shoham, Y. "A Logic of Events," Working Paper, Department of Computer Science,
Yale University, New Haven, Connecticut (1985).

[106] Shoham, Y. and T.Dean, "Temporal Notation and Causal Terminology," Working
Paper, Department of Computer Science, Yale University, New Haven, Connecticut
(1985).

[107] Smullyan, R. M. (1971). First-order logic. Springer-Verlag, New York.

[108] Stalnaker, R. C. A note on nonmonotonic modal logic. 1980. Department of
Philosophy, Cornell University.

[109] Stickel, M. E. (1982). A nonclausal connection-graph resolution theorem-proving
program. Proceedings of the AAAI-82 National Conference on Artificial Intelligence,
Pittsburgh, Pennsylvania, pp. 229-233.

[110] Stickel, M. E. (1985). Automated deduction by theory resolution. Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
California.

124



[111] Stuart, C. J., "An Implementation of a Multi-Agent Plan Synchronizer Using a

Temporal Logic Theorem Prover," Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, California (1985). -

[112) Tate, A. "Generating Project Networks," IJCAI-77, Proceedings of the Fifth p..

International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts. ..

pp. 888-893 (August 1977).

[113] Touretzky, D. S. The Mathematics of Inheritance Systems. Morgan Kaufmann
Publishers, Inc., Los Altos, California, 1986.

S..•,,

[114] S. Vere. Planning in time: windows and durations for activities and goals. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(3):246-267, 1983.

[115] Weyhrauch, R. (1980). Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence 13, no. 1-2.

[116] Wilkins, D. E., "Domain-Independent Planning: Representation and Plan
Generation," Artificial Intelligence, 22, pp. 269-302 (1984).

1.
.:-

°*1

5.-?

o5-.

.1.



Aw 
w Ap

dr- V- %
P Jo .1 .1 .1 -e% %
-P -P * -P P .1 r F ee. o it

N N N %


